Robust Fusion Filtering for Multisensor Time-Varying Uncertain Systems: The Finite Horizon Case

The robust H∞ fusion filtering problem is considered for linear time-varying uncertain systems observed by multiple sensors. A performance index function for this problem is defined as an indefinite quadratic inequality which is solved by the projection method in Krein space. On this basis, a robust...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaoliang Feng, Funa Zhou, Chenglin Wen
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2016/2720549
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The robust H∞ fusion filtering problem is considered for linear time-varying uncertain systems observed by multiple sensors. A performance index function for this problem is defined as an indefinite quadratic inequality which is solved by the projection method in Krein space. On this basis, a robust centralized finite horizon H∞ fusion filtering algorithm is proposed. However, this centralized fusion method is with poor real time property, as the number of sensors increases. To resolve this difficulty, within the sequential fusion framework, the performance index function is described as a set of quadratic inequalities including an indefinite quadratic inequality. And a sequential robust finite horizon H∞ fusion filtering algorithm is given by solving this quadratic inequality group. Finally, two simulation examples for time-varying/time-invariant multisensor systems are exploited to demonstrate the effectiveness of the proposed methods in the respect of the real time property and filtering accuracy.
ISSN:1026-0226
1607-887X