Research on Fire Suppression Characteristics of Compressed Air Foams in Full-Scale 220 kV Converter Transformer

To study the fire behavior of UHVDC (ultra-high-voltage direct current) converter transformers and the effectiveness of CAFs (compressed air foams) in suppressing fires, a full-scale model of a 220 kV converter transformer fire was constructed. The model mainly considered the oil pool fires and oil...

Full description

Saved in:
Bibliographic Details
Main Authors: Yike Guo, Tao Chen, Biao Zhou, Peng Zhang, Yuwei Wang, Xuyao Wang, Danping Hao
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Fire
Subjects:
Online Access:https://www.mdpi.com/2571-6255/8/1/12
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To study the fire behavior of UHVDC (ultra-high-voltage direct current) converter transformers and the effectiveness of CAFs (compressed air foams) in suppressing fires, a full-scale model of a 220 kV converter transformer fire was constructed. The model mainly considered the oil pool fires and oil spill fires that form after explosions, causing the casing to completely fall out. The hot oil fire tests were conducted on the physical converter transformer. The fire suppression characteristics of the CAF system for converter transformer fires were studied. The temperature and changes in various locations of the fire model were analyzed under different foam supply strengths. The fire in a converter transformer is characterized by intense heat, high temperatures, and strong radiation. The highest temperature can exceed 1000 °C in cases of complete combustion. The fire in the converter transformer involves a dynamic oil spill and a large pool of oil, making it challenging to extinguish. The fire extinguishing performance and cooling effect of CAFs are outstanding. The recommended foam supply strength for the actual project is more than 8 L/(min·m<sup>2</sup>).
ISSN:2571-6255