G-UNETR++: A Gradient-Enhanced Network for Accurate and Robust Liver Segmentation from Computed Tomography Images

Accurate liver segmentation from computed tomography (CT) scans is essential for liver cancer diagnosis and liver surgery planning. Convolutional neural network (CNN)-based models have limited segmentation performance due to their localized receptive fields. Hybrid models incorporating CNNs and tran...

Full description

Saved in:
Bibliographic Details
Main Authors: Seungyoo Lee, Kyujin Han, Hangyeul Shin, Harin Park, Seunghyon Kim, Jeonghun Kim, Xiaopeng Yang, Jae Do Yang, Hee Chul Yu, Heecheon You
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/2/837
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Accurate liver segmentation from computed tomography (CT) scans is essential for liver cancer diagnosis and liver surgery planning. Convolutional neural network (CNN)-based models have limited segmentation performance due to their localized receptive fields. Hybrid models incorporating CNNs and transformers that can capture long-range dependencies have shown promising performance in liver segmentation with the cost of high model complexity. Therefore, a new network architecture named G-UNETR++ is proposed to improve accuracy in liver segmentation with moderate model complexity. Two gradient-based encoders that take the second-order partial derivatives (the first two elements from the last column of the Hessian matrix of a CT scan) as inputs are proposed to learn the 3D geometric features such as the boundaries between different organs and tissues. In addition, a hybrid loss function that combines dice loss, cross-entropy loss, and Hausdorff distance loss is designed to address class imbalance and improve segmentation performance in challenging cases. The proposed method was evaluated on three public datasets, the Liver Tumor Segmentation (LiTS) dataset, the 3D Image Reconstruction for Comparison of Algorithms Database (3D-IRCADb), and the Segmentation of the Liver Competition 2007 (Sliver07) dataset, and achieved 97.38%, 97.50%, and 97.32% in terms of the dice similarity coefficient for liver segmentation on the three datasets, respectively. The proposed method outperformed the other state-of-the-art models on the three datasets, which demonstrated the strong effectiveness, robustness, and generalizability of the proposed method in liver segmentation.
ISSN:2076-3417