Entropy Production in a System of Janus Particles
Entropy production is a key descriptor of out-of-equilibrium behavior in active matter systems, providing insights into both single-particle dynamics and emergent collective phenomena. It helps determine transport coefficients and phoretic velocities and serves as a crucial tool for understanding co...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-01-01
|
| Series: | Entropy |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1099-4300/27/2/112 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Entropy production is a key descriptor of out-of-equilibrium behavior in active matter systems, providing insights into both single-particle dynamics and emergent collective phenomena. It helps determine transport coefficients and phoretic velocities and serves as a crucial tool for understanding collective phenomena such as structural transitions, regime shifts, clustering, and self-organization. This study investigates the role of entropy production for individual active (catalytic Janus) particles and in systems of active particles interacting with one another and their environment. We employ a multiscale framework to bridge microscopic particle dynamics and macroscopic behavior, offering a thermodynamic perspective on active matter. These findings enhance our understanding of the fundamental principles governing active particle systems and create new opportunities for addressing unresolved questions in non-equilibrium thermodynamics. |
|---|---|
| ISSN: | 1099-4300 |