Compressed Sensing in On-Grid MIMO Radar

The accurate detection of targets is a significant problem in multiple-input multiple-output (MIMO) radar. Recent advances of Compressive Sensing offer a means of efficiently accomplishing this task. The sparsity constraints needed to apply the techniques of Compressive Sensing to problems in radar...

Full description

Saved in:
Bibliographic Details
Main Author: Michael F. Minner
Format: Article
Language:English
Published: Wiley 2015-01-01
Series:The Scientific World Journal
Online Access:http://dx.doi.org/10.1155/2015/397878
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The accurate detection of targets is a significant problem in multiple-input multiple-output (MIMO) radar. Recent advances of Compressive Sensing offer a means of efficiently accomplishing this task. The sparsity constraints needed to apply the techniques of Compressive Sensing to problems in radar systems have led to discretizations of the target scene in various domains, such as azimuth, time delay, and Doppler. Building upon recent work, we investigate the feasibility of on-grid Compressive Sensing-based MIMO radar via a threefold azimuth-delay-Doppler discretization for target detection and parameter estimation. We utilize a colocated random sensor array and transmit distinct linear chirps to a small scene with few, slowly moving targets. Relying upon standard far-field and narrowband assumptions, we analyze the efficacy of various recovery algorithms in determining the parameters of the scene through numerical simulations, with particular focus on the l1-squared Nonnegative Regularization method.
ISSN:2356-6140
1537-744X