Empirical Comparison of Flow Field Designs for Direct Ethanol-Based, High-Temperature PEM Fuel Cells
This study experimentally investigates various flow field designs for a direct ethanol-based proton exchange membrane (PEM) fuel cell operated at a temperature above the vaporization temperature of water. It expands the designs of flow fields investigated for high-temperature (HT) direct ethanol fue...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Fuels |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2673-3994/6/2/46 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This study experimentally investigates various flow field designs for a direct ethanol-based proton exchange membrane (PEM) fuel cell operated at a temperature above the vaporization temperature of water. It expands the designs of flow fields investigated for high-temperature (HT) direct ethanol fuel cells by comparing four designs. It investigates the performance of these designs at various ethanol concentrations and flow rates. A series of polarization, constant current, and impedance spectroscopy experiments were carried out at different combinations of operating conditions. The result shows that all flow fields provide poorer performance at a high ethanol concentration (6 M), regardless of ethanol inlet flow rates. At a low concentration (3 M), the 2-channel spiral flow field exhibits higher cell power output (12–18% higher) with less mass transport loss and charge transfer resistance compared to other flow fields, although it has some voltage instability. As such, it is identified as a promising design, particularly for higher-power applications. The 4-channel serpentine, dual-triangle sandwich, and hybrid flow fields offer similar cell power output (max power: ~23 mW/cm<sup>2</sup>) and cell potentials. However, the cell potential instability and mass transport losses are higher in the hybrid flow field compared to the other two designs. Thus, it is not as promising a design for ethanol-based HT-PEM fuel cells. Since the dual-triangle has similar performance to the 4-channel serpentine, it could be an alternative to the serpentine for ethanol-based HT-PEM fuel cells. |
|---|---|
| ISSN: | 2673-3994 |