Necessary Conditions for the Solutions of Second Order Non-linear Neutral Delay Difference Equations to Be Oscillatory or Tend to Zero

We find necessary conditions for every solution of the neutral delay difference equation Δ(rnΔ(yn−pnyn−m))+qnG(yn−k)=fn to oscillate or to tend to zero as n→∞, where Δ is the forward difference operator Δxn=xn+1−xn, and pn, qn, rn are sequences of real numbers with qn≥0, rn>0. Different ranges o...

Full description

Saved in:
Bibliographic Details
Main Authors: R. N. Rath, J. G. Dix, B. L. S. Barik, B. Dihudi
Format: Article
Language:English
Published: Wiley 2007-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/2007/60907
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We find necessary conditions for every solution of the neutral delay difference equation Δ(rnΔ(yn−pnyn−m))+qnG(yn−k)=fn to oscillate or to tend to zero as n→∞, where Δ is the forward difference operator Δxn=xn+1−xn, and pn, qn, rn are sequences of real numbers with qn≥0, rn>0. Different ranges of {pn}, including pn=±1, are considered in this paper. We do not assume that G is Lipschitzian nor nondecreasing with xG(x)>0 for x≠0. In this way, the results of this paper improve, generalize, and extend recent results. Also, we provide illustrative examples for our results.
ISSN:0161-1712
1687-0425