Chladni and Fractal Dynamics: Dual Mode Marker to Map Cancer Cell Nucleus Disintegration Phases
Conventional cancer drugs are small molecules that target specific pathways. We introduced PCMS, a 26 kDa supramolecule combining sensors (S), molecular motors (M), and switching molecules (C), integrated within a fourth-generation PAMAM structure (P). PCMS identifies and deactivates cancer cell nuc...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2024-12-01
|
Series: | Fractal and Fractional |
Subjects: | |
Online Access: | https://www.mdpi.com/2504-3110/9/1/8 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Conventional cancer drugs are small molecules that target specific pathways. We introduced PCMS, a 26 kDa supramolecule combining sensors (S), molecular motors (M), and switching molecules (C), integrated within a fourth-generation PAMAM structure (P). PCMS identifies and deactivates cancer cell nucleus dynamics. A decade ago, we demonstrated programmable, clock-like interactions among the S-C-M components. In this study, we captured images of fractal patterns formed by chromosomal compartments and developed a theoretical model of their fractal dynamics. We showed that the nucleus behaves like a cavity, producing resonance effects similar to Chladni patterns. When the external agent, PCMS, interacts with this cavity, it generates a fractal pattern. We identified and mapped five key phase transitions that ultimately lead to the breakdown of cancer cell nuclei. |
---|---|
ISSN: | 2504-3110 |