Existence and Uniqueness of the Solution for a Time-Fractional Diffusion Equation with Robin Boundary Condition

Existence and uniqueness of the solution for a time-fractional diffusion equation with Robin boundary condition on a bounded domain with Lyapunov boundary is proved in the space of continuous functions up to boundary. Since a Green matrix of the problem is known, we may seek the solution as the line...

Full description

Saved in:
Bibliographic Details
Main Author: Jukka Kemppainen
Format: Article
Language:English
Published: Wiley 2011-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2011/321903
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Existence and uniqueness of the solution for a time-fractional diffusion equation with Robin boundary condition on a bounded domain with Lyapunov boundary is proved in the space of continuous functions up to boundary. Since a Green matrix of the problem is known, we may seek the solution as the linear combination of the single-layer potential, the volume potential, and the Poisson integral. Then the original problem may be reduced to a Volterra integral equation of the second kind associated with a compact operator. Classical analysis may be employed to show that the corresponding integral equation has a unique solution if the boundary data is continuous, the initial data is continuously differentiable, and the source term is Hölder continuous in the spatial variable. This in turn proves that the original problem has a unique solution.
ISSN:1085-3375
1687-0409