Modeling Dendrimers Charge Interaction in Solution: Relevance in Biosystems

Dendrimers are highly branched macromolecules obtained by stepwise controlled, reaction sequences. The ability to be designed for specific applications makes dendrimers unprecedented components to control the structural organization of matter during the bottom-up synthesis of functional nanostructur...

Full description

Saved in:
Bibliographic Details
Main Author: Domenico Lombardo
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Biochemistry Research International
Online Access:http://dx.doi.org/10.1155/2014/837651
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Dendrimers are highly branched macromolecules obtained by stepwise controlled, reaction sequences. The ability to be designed for specific applications makes dendrimers unprecedented components to control the structural organization of matter during the bottom-up synthesis of functional nanostructures. For their applications in the field of biotechnology the determination of dendrimer structural properties as well as the investigation of the specific interaction with guest components are needed. We show how the analysis of the scattering structure factor S(q), in the framework of current models for charged systems in solution, allows for obtaining important information of the interdendrimers electrostatic interaction potential. The finding of the presented results outlines the important role of the dendrimer charge and the solvent conditions in regulating, through the modulation of the electrostatic interaction potential, great part of the main structural properties. This charge interaction has been indicated by many studies as a crucial factor for a wide range of structural processes involving their biomedical application. Due to their easily controllable properties dendrimers can be considered at the crossroad between traditional colloids, associating polymers, and biological systems and represent then an interesting new technological approach and a suitable model system of molecular organization in biochemistry and related fields.
ISSN:2090-2247
2090-2255