Flexural Response of Steel-Concrete Composite Truss Beams
This paper presents an experimental and analytical study on the flexural response of a steel-concrete composite truss beam. This integrated unit consists of a triangular steel truss, a concrete slab on it, and stud connectors. Three simply supported composite trusses with different configurations of...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2019-01-01
|
Series: | Advances in Civil Engineering |
Online Access: | http://dx.doi.org/10.1155/2019/1502707 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents an experimental and analytical study on the flexural response of a steel-concrete composite truss beam. This integrated unit consists of a triangular steel truss, a concrete slab on it, and stud connectors. Three simply supported composite trusses with different configurations of shear connection (η) were evaluated via three-point bending tests. The effects of the shear connectors’ configuration on the flexural response (i.e., load-deflection, load-slippage, and load-strain curves) of the composite trusses were examined. The commercial finite-element (FE) software ANSYS was employed to conduct numerical simulations. An FE model was developed for the composite truss and was validated using experimental results. A parametric study was performed to investigate the effect of the shear connectors’ configuration on the flexural response of the composite trusses. If η < 1, the bending capacity increased with η. In contrast, if η ≥ 1, the effect of η on the bending capacity was negligible. Finally, a design method based on the degree of the shear connection was proposed to predict the ultimate capacity of the composite truss, and the predictions agreed well with the experimental results. |
---|---|
ISSN: | 1687-8086 1687-8094 |