Feature Extraction and Selection Scheme for Intelligent Engine Fault Diagnosis Based on 2DNMF, Mutual Information, and NSGA-II

A novel feature extraction and selection scheme is presented for intelligent engine fault diagnosis by utilizing two-dimensional nonnegative matrix factorization (2DNMF), mutual information, and nondominated sorting genetic algorithms II (NSGA-II). Experiments are conducted on an engine test rig, in...

Full description

Saved in:
Bibliographic Details
Main Authors: Peng-yuan Liu, Bing Li, Cui-e Han, Feng Wang
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2016/3975285
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A novel feature extraction and selection scheme is presented for intelligent engine fault diagnosis by utilizing two-dimensional nonnegative matrix factorization (2DNMF), mutual information, and nondominated sorting genetic algorithms II (NSGA-II). Experiments are conducted on an engine test rig, in which eight different engine operating conditions including one normal condition and seven fault conditions are simulated, to evaluate the presented feature extraction and selection scheme. In the phase of feature extraction, the S transform technique is firstly utilized to convert the engine vibration signals to time-frequency domain, which can provide richer information on engine operating conditions. Then a novel feature extraction technique, named two-dimensional nonnegative matrix factorization, is employed for characterizing the time-frequency representations. In the feature selection phase, a hybrid filter and wrapper scheme based on mutual information and NSGA-II is utilized to acquire a compact feature subset for engine fault diagnosis. Experimental results by adopted three different classifiers have demonstrated that the proposed feature extraction and selection scheme can achieve a very satisfying classification performance with fewer features for engine fault diagnosis.
ISSN:1070-9622
1875-9203