THE IMPLEMENTATION OF A ROUGH SET OF PROJECTIVE MODULE

In ring and module theory, one concept is the projective module. A module is said to be projective if it is a direct sum of independent modules. (U, R)  is an approximation space with non-empty set  and equivalence relation   If X subset U, we can form upper approximation and lower approximation....

Full description

Saved in:
Bibliographic Details
Main Authors: Gusti Ayu Dwiyanti, Fitriani Fitriani, Ahmad Faisol
Format: Article
Language:English
Published: Universitas Pattimura 2023-06-01
Series:Barekeng
Subjects:
Online Access:https://ojs3.unpatti.ac.id/index.php/barekeng/article/view/7726
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849239505905647616
author Gusti Ayu Dwiyanti
Fitriani Fitriani
Ahmad Faisol
author_facet Gusti Ayu Dwiyanti
Fitriani Fitriani
Ahmad Faisol
author_sort Gusti Ayu Dwiyanti
collection DOAJ
description In ring and module theory, one concept is the projective module. A module is said to be projective if it is a direct sum of independent modules. (U, R)  is an approximation space with non-empty set  and equivalence relation   If X subset U, we can form upper approximation and lower approximation. X is rough set if  upper Apr(X) is not equal to under Apr(X). The rough set theory applies to algebraic structures, including groups, rings, modules, and module homomorphisms. In this study, we will investigate the properties of the rough projective module.
format Article
id doaj-art-5e5f3b4e2ce4498dae31d68a3ba3c81c
institution Kabale University
issn 1978-7227
2615-3017
language English
publishDate 2023-06-01
publisher Universitas Pattimura
record_format Article
series Barekeng
spelling doaj-art-5e5f3b4e2ce4498dae31d68a3ba3c81c2025-08-20T04:00:55ZengUniversitas PattimuraBarekeng1978-72272615-30172023-06-011720735074410.30598/barekengvol17iss2pp0735-07447726THE IMPLEMENTATION OF A ROUGH SET OF PROJECTIVE MODULEGusti Ayu Dwiyanti0Fitriani Fitriani1Ahmad Faisol2Department of Mathematics, Universitas Lampung, IndonesiaDepartment of Mathematics, Universitas Lampung, IndonesiaDepartment of Mathematics, Universitas Lampung, IndonesiaIn ring and module theory, one concept is the projective module. A module is said to be projective if it is a direct sum of independent modules. (U, R)  is an approximation space with non-empty set  and equivalence relation   If X subset U, we can form upper approximation and lower approximation. X is rough set if  upper Apr(X) is not equal to under Apr(X). The rough set theory applies to algebraic structures, including groups, rings, modules, and module homomorphisms. In this study, we will investigate the properties of the rough projective module.https://ojs3.unpatti.ac.id/index.php/barekeng/article/view/7726approximation spaceprojective modulerough projective module
spellingShingle Gusti Ayu Dwiyanti
Fitriani Fitriani
Ahmad Faisol
THE IMPLEMENTATION OF A ROUGH SET OF PROJECTIVE MODULE
Barekeng
approximation space
projective module
rough projective module
title THE IMPLEMENTATION OF A ROUGH SET OF PROJECTIVE MODULE
title_full THE IMPLEMENTATION OF A ROUGH SET OF PROJECTIVE MODULE
title_fullStr THE IMPLEMENTATION OF A ROUGH SET OF PROJECTIVE MODULE
title_full_unstemmed THE IMPLEMENTATION OF A ROUGH SET OF PROJECTIVE MODULE
title_short THE IMPLEMENTATION OF A ROUGH SET OF PROJECTIVE MODULE
title_sort implementation of a rough set of projective module
topic approximation space
projective module
rough projective module
url https://ojs3.unpatti.ac.id/index.php/barekeng/article/view/7726
work_keys_str_mv AT gustiayudwiyanti theimplementationofaroughsetofprojectivemodule
AT fitrianifitriani theimplementationofaroughsetofprojectivemodule
AT ahmadfaisol theimplementationofaroughsetofprojectivemodule
AT gustiayudwiyanti implementationofaroughsetofprojectivemodule
AT fitrianifitriani implementationofaroughsetofprojectivemodule
AT ahmadfaisol implementationofaroughsetofprojectivemodule