Progress in Avalanche Photodiodes for Laser Ranging

Laser ranging is a high-precision geodetic technique that plays an indispensable role in the field of geodynamics. Avalanche photodiodes (APDs) offer a series of advantages over other photodetector technologies, including photomultiplier tubes (PMTs) and superconducting single-photon detectors (SNSP...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhenxing Liu, Ning An, Xingwei Han, Natalia Edith Nuñez, Liang Jin, Chengzhi Liu
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/9/2802
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Laser ranging is a high-precision geodetic technique that plays an indispensable role in the field of geodynamics. Avalanche photodiodes (APDs) offer a series of advantages over other photodetector technologies, including photomultiplier tubes (PMTs) and superconducting single-photon detectors (SNSPDs). These advantages include high sensitivity, small size, high integration, and low power consumption, which have contributed to the widespread use of APDs in laser ranging applications. This paper analyses the key role of APDs in enhancing the accuracy and stability of laser ranging through the examination of application examples, including Si-APD and InGaAs/InP APD. Finally, based on the technological needs of laser ranging, the future development directions of APDs are envisioned, aiming to provide a reference for the research of photodetectors in high-precision and high-frequency laser ranging applications.
ISSN:1424-8220