Enhanced Photocatalytic Activity of Powders (P25) via Calcination Treatment

P25 TiO2 powders were calcined at different temperatures in a muffle furnace in air. The P25 powders before and after calcination treatment were characterized with XRD FTIR, UV-visible diffuse reflectance spectra, SEM, TEM, HRTEM, and N2 adsorption-desorption measurements. The photocatalytic activit...

Full description

Saved in:
Bibliographic Details
Main Authors: Guohong Wang, Lin Xu, Jun Zhang, Tingting Yin, Deyan Han
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:International Journal of Photoenergy
Online Access:http://dx.doi.org/10.1155/2012/265760
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:P25 TiO2 powders were calcined at different temperatures in a muffle furnace in air. The P25 powders before and after calcination treatment were characterized with XRD FTIR, UV-visible diffuse reflectance spectra, SEM, TEM, HRTEM, and N2 adsorption-desorption measurements. The photocatalytic activity was evaluated by the photocatalytic oxidation of methyl orange aqueous solution under UV light irradiation in air. The results showed that calcination treatment obviously influenced the microstructures and photocatalytic activity of the P25 TiO2 powders. The synergistic effect of the phase structure, BET surface area, and crystallinity on the photocatalytic of TiO2 powders (P25) after calcination was investigated. An optimal calcination temperature () was determined. The photocatalytic activity of TiO2 powders calcined at was nearly 2 times higher than that of the uncalcined P25 TiO2. The highest photocatalytic activities of the calcined samples at for 4 h might be ascribed to the enhancement of anatase crystallization and the optimal mass ratio (ca. 1 : 2) of rutile to anatase.
ISSN:1110-662X
1687-529X