Pareto Front Transformation in the Decision-Making Process for Spectral and Energy Efficiency Trade-Off in Massive MIMO Systems

This paper presents a method of choosing a single solution in the Pareto Optimal Front of the multi-objective problem of the spectral and energy efficiency trade-off in Massive MIMO (Multiple Input, Multiple Output) systems. It proposes the transformation of the group of non-dominated alternatives u...

Full description

Saved in:
Bibliographic Details
Main Authors: Eni Haxhiraj, Desar Shahu, Elson Agastra
Format: Article
Language:English
Published: MDPI AG 2025-02-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/5/1451
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a method of choosing a single solution in the Pareto Optimal Front of the multi-objective problem of the spectral and energy efficiency trade-off in Massive MIMO (Multiple Input, Multiple Output) systems. It proposes the transformation of the group of non-dominated alternatives using the Box–Cox transformation with values of λ < 1 so that the graph with a complex shape is transformed into a concave graph. The Box–Cox transformation solves the selection bias shown by the decision-making algorithms in the non-concave part of the Pareto Front. After the transformation, four different MCDM (Multi-Criteria Decision-Making) algorithms were implemented and compared: SAW (Simple Additive Weighting), TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution), PROMITHEE (Preference Ranking Organization Method for Enrichment Evaluations) and VIKOR (Vlse Kriterijumska Optimizacija Kompromisno Resenje). The simulations showed that the best value of the λ parameter is 0, and the MCDM algorithms which explore the Pareto Front completely for different values of weights of the objectives are VIKOR as well as SAW and TOPSIS when they include the Max–Min normalization technique.
ISSN:1424-8220