Gaussian Fibonacci Circulant Type Matrices

Circulant matrices have become important tools in solving integrable system, Hamiltonian structure, and integral equations. In this paper, we prove that Gaussian Fibonacci circulant type matrices are invertible matrices for n>2 and give the explicit determinants and the inverse matrices. Furtherm...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhaolin Jiang, Hongxia Xin, Fuliang Lu
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2014/592782
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832552774191022080
author Zhaolin Jiang
Hongxia Xin
Fuliang Lu
author_facet Zhaolin Jiang
Hongxia Xin
Fuliang Lu
author_sort Zhaolin Jiang
collection DOAJ
description Circulant matrices have become important tools in solving integrable system, Hamiltonian structure, and integral equations. In this paper, we prove that Gaussian Fibonacci circulant type matrices are invertible matrices for n>2 and give the explicit determinants and the inverse matrices. Furthermore, the upper bounds for the spread on Gaussian Fibonacci circulant and left circulant matrices are presented, respectively.
format Article
id doaj-art-5dbedac010404cb29f5af0b4497ee4e0
institution Kabale University
issn 1085-3375
1687-0409
language English
publishDate 2014-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-5dbedac010404cb29f5af0b4497ee4e02025-02-03T05:57:45ZengWileyAbstract and Applied Analysis1085-33751687-04092014-01-01201410.1155/2014/592782592782Gaussian Fibonacci Circulant Type MatricesZhaolin Jiang0Hongxia Xin1Fuliang Lu2Department of Mathematics, Linyi University, Linyi, Shandong 276000, ChinaDepartment of Mathematics, Linyi University, Linyi, Shandong 276000, ChinaDepartment of Mathematics, Linyi University, Linyi, Shandong 276000, ChinaCirculant matrices have become important tools in solving integrable system, Hamiltonian structure, and integral equations. In this paper, we prove that Gaussian Fibonacci circulant type matrices are invertible matrices for n>2 and give the explicit determinants and the inverse matrices. Furthermore, the upper bounds for the spread on Gaussian Fibonacci circulant and left circulant matrices are presented, respectively.http://dx.doi.org/10.1155/2014/592782
spellingShingle Zhaolin Jiang
Hongxia Xin
Fuliang Lu
Gaussian Fibonacci Circulant Type Matrices
Abstract and Applied Analysis
title Gaussian Fibonacci Circulant Type Matrices
title_full Gaussian Fibonacci Circulant Type Matrices
title_fullStr Gaussian Fibonacci Circulant Type Matrices
title_full_unstemmed Gaussian Fibonacci Circulant Type Matrices
title_short Gaussian Fibonacci Circulant Type Matrices
title_sort gaussian fibonacci circulant type matrices
url http://dx.doi.org/10.1155/2014/592782
work_keys_str_mv AT zhaolinjiang gaussianfibonaccicirculanttypematrices
AT hongxiaxin gaussianfibonaccicirculanttypematrices
AT fulianglu gaussianfibonaccicirculanttypematrices