Gaussian Fibonacci Circulant Type Matrices
Circulant matrices have become important tools in solving integrable system, Hamiltonian structure, and integral equations. In this paper, we prove that Gaussian Fibonacci circulant type matrices are invertible matrices for n>2 and give the explicit determinants and the inverse matrices. Furtherm...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2014-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2014/592782 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832552774191022080 |
---|---|
author | Zhaolin Jiang Hongxia Xin Fuliang Lu |
author_facet | Zhaolin Jiang Hongxia Xin Fuliang Lu |
author_sort | Zhaolin Jiang |
collection | DOAJ |
description | Circulant matrices have become important tools in solving integrable system, Hamiltonian structure, and integral equations. In this paper, we prove that Gaussian Fibonacci circulant type matrices are invertible matrices for n>2 and give the explicit determinants and the inverse matrices. Furthermore, the upper bounds for the spread on Gaussian Fibonacci circulant and left circulant matrices are presented, respectively. |
format | Article |
id | doaj-art-5dbedac010404cb29f5af0b4497ee4e0 |
institution | Kabale University |
issn | 1085-3375 1687-0409 |
language | English |
publishDate | 2014-01-01 |
publisher | Wiley |
record_format | Article |
series | Abstract and Applied Analysis |
spelling | doaj-art-5dbedac010404cb29f5af0b4497ee4e02025-02-03T05:57:45ZengWileyAbstract and Applied Analysis1085-33751687-04092014-01-01201410.1155/2014/592782592782Gaussian Fibonacci Circulant Type MatricesZhaolin Jiang0Hongxia Xin1Fuliang Lu2Department of Mathematics, Linyi University, Linyi, Shandong 276000, ChinaDepartment of Mathematics, Linyi University, Linyi, Shandong 276000, ChinaDepartment of Mathematics, Linyi University, Linyi, Shandong 276000, ChinaCirculant matrices have become important tools in solving integrable system, Hamiltonian structure, and integral equations. In this paper, we prove that Gaussian Fibonacci circulant type matrices are invertible matrices for n>2 and give the explicit determinants and the inverse matrices. Furthermore, the upper bounds for the spread on Gaussian Fibonacci circulant and left circulant matrices are presented, respectively.http://dx.doi.org/10.1155/2014/592782 |
spellingShingle | Zhaolin Jiang Hongxia Xin Fuliang Lu Gaussian Fibonacci Circulant Type Matrices Abstract and Applied Analysis |
title | Gaussian Fibonacci Circulant Type Matrices |
title_full | Gaussian Fibonacci Circulant Type Matrices |
title_fullStr | Gaussian Fibonacci Circulant Type Matrices |
title_full_unstemmed | Gaussian Fibonacci Circulant Type Matrices |
title_short | Gaussian Fibonacci Circulant Type Matrices |
title_sort | gaussian fibonacci circulant type matrices |
url | http://dx.doi.org/10.1155/2014/592782 |
work_keys_str_mv | AT zhaolinjiang gaussianfibonaccicirculanttypematrices AT hongxiaxin gaussianfibonaccicirculanttypematrices AT fulianglu gaussianfibonaccicirculanttypematrices |