Charged Scalar Boson in Melvin Universe

This work investigates the dynamics of a charged scalar boson in the Melvin universe by solving the Klein–Gordon equation with minimal coupling in both inertial and non-inertial frames. Non-inertial effects are introduced through a rotating reference frame, resulting in a modified spacetime geometry...

Full description

Saved in:
Bibliographic Details
Main Authors: Leonardo G. Barbosa, Luis C. N. Santos, João V. Zamperlini, Franciele M. da Silva, Celso C. Barros
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Universe
Subjects:
Online Access:https://www.mdpi.com/2218-1997/11/6/193
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This work investigates the dynamics of a charged scalar boson in the Melvin universe by solving the Klein–Gordon equation with minimal coupling in both inertial and non-inertial frames. Non-inertial effects are introduced through a rotating reference frame, resulting in a modified spacetime geometry and the appearance of a critical radius that limits the radial domain of the field. Analytical solutions are obtained under appropriate approximations, and the corresponding energy spectra are derived. The results indicate that both the magnetic field and non-inertial effects modify the energy levels, with additional contributions depending on the coupling between the rotation parameter and the quantum numbers. A numerical analysis is also presented, illustrating the behavior of the solutions for two characteristic magnetic field scales: one that may be considered extreme, of the order of the ones proposed to be produced in heavy-ion collisions, and another near the Planck scale.
ISSN:2218-1997