A Vibration Reliability Analysis Method for the Uncertain Space Beam Structure

Considering that uncertainty is inherent and unavoidable in engineering practice and the available information about the uncertain parameters is always not sufficient, the paper tries to carry out the nonprobabilistic vibration reliability analysis so as to avoid resonance on uncertain structure wit...

Full description

Saved in:
Bibliographic Details
Main Authors: Yanyu Mo, Shuxiang Guo, Cheng Tang
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2016/9218590
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Considering that uncertainty is inherent and unavoidable in engineering practice and the available information about the uncertain parameters is always not sufficient, the paper tries to carry out the nonprobabilistic vibration reliability analysis so as to avoid resonance on uncertain structure with bounded parameters. The input uncertain-but-bounded parameters are treated as interval variables, and an interval model is adopted to describe bounded uncertainties. Then a theory of nonprobabilistic reliability is introduced, in which the dimensionless nonprobabilistic reliability index and system reliability index are defined. In order to investigate the resonance failure with reliability method, the resonance failure domains are stated according to the relationships between the natural frequencies and the excitation frequencies. Then the uncertain structure is modeled as a series system and a system reliability index is proposed to evaluate the safety of the structure. The paper also takes a frequency analysis on the uncertain space beam structure to get the resonance failure modes. A frequency analysis method based on the monotonicity discriminant of the frequency sensitivity is presented. Then an optimization algorithm is introduced to verify the validity of the former frequency analysis method. Two examples are provided to illustrate the effectiveness and feasibility of the presented method.
ISSN:1070-9622
1875-9203