Giant gate modulation of antiferromagnetic spin reversal by the magnetoelectric effect

Abstract In this study, using the Pt/Cr2O3/Pt epitaxial trilayer, we demonstrate the giant voltage modulation of the antiferromagnetic spin reversal and the voltage-induced 180° switching of the Néel vector in maintaining a permanent magnetic field. We obtained a significant modulation efficiency of...

Full description

Saved in:
Bibliographic Details
Main Authors: Kakeru Ujimoto, Hiroki Sameshima, Kentaro Toyoki, Takahiro Moriyama, Kohji Nakamura, Yoshinori Kotani, Motohiro Suzuki, Ion Iino, Naomi Kawamura, Ryoichi Nakatani, Yu Shiratsuchi
Format: Article
Language:English
Published: Nature Portfolio 2024-04-01
Series:NPG Asia Materials
Online Access:https://doi.org/10.1038/s41427-024-00541-z
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract In this study, using the Pt/Cr2O3/Pt epitaxial trilayer, we demonstrate the giant voltage modulation of the antiferromagnetic spin reversal and the voltage-induced 180° switching of the Néel vector in maintaining a permanent magnetic field. We obtained a significant modulation efficiency of the switching field, Δμ 0 H SW/ΔV (Δμ 0 H SW/ΔE), reaching a maximum of −500 mT/V (−4.80 T nm/V); this value was more than 50 times greater than that of the ferromagnetic-based counterparts. From the temperature dependence of the modulation efficiency, X-ray magnetic circular dichroism measurements and first-principles calculations, we showed that the origin of the giant modulation efficiency relied on the electric field modulation of the net magnetization due to the magnetoelectric effect. From the first-principles calculation and the thickness effect on the offset electric field, we found that the interfacial magnetoelectric effect emerged. Our demonstration reveals the energy-efficient and widely applicable operation of an antiferromagnetic spin based on a mechanism distinct from magnetic anisotropy control.
ISSN:1884-4057