Potential of Agricultural Waste Fibers for Dialdehyde Carboxymethyl Cellulose Production
This study investigates the environmental issue of air pollution (PM 2.5) from agricultural waste in Thailand and promotes the utilization of agricultural wastes by using their chemical compositions, especially cellulose content. The fourth readily available varieties of agricultural waste, such as...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-02-01
|
| Series: | Polysaccharides |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2673-4176/6/1/12 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This study investigates the environmental issue of air pollution (PM 2.5) from agricultural waste in Thailand and promotes the utilization of agricultural wastes by using their chemical compositions, especially cellulose content. The fourth readily available varieties of agricultural waste, such as rice straw, corn husk, hemp shive, and durian rind, were selected to evaluate their fiber morphology and chemical properties. Subsequently, dialdehyde carboxymethyl cellulose (DCMC) was produced from four kinds of agricultural wastes under synthesis conditions involving a pH value of 3.0, a reaction temperature of 35 °C, a mass ratio of NaIO<sub>4</sub> and carboxymethyl cellulose (CMC) of 1:3, and a reaction time of 4 h. The formation of aldehyde substitution was confirmed by the degree of oxidation (DO) and aldehyde content. To characterize the DCMC properties determined, Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), gel permeation chromatography (GPC), and scanning electron microscopy (SEM) were used. The results revealed that rice straw, corn husk, hemp shives, and durian rinds presented high DO and aldehyde content; the aldehyde contents were more significant than 30% and 50%, respectively. The highest DO and aldehyde contents were 38.63 and 77.23%, respectively, for the hemp shives. The characterized data in recent research illustrated that the added value of agricultural wastes could be increased by DCMC production, which can be applied as a crosslinking reagent for future novel biopolymer film applications. |
|---|---|
| ISSN: | 2673-4176 |