Effects of Low Reynolds Number on Wake-Generated Unsteady Flow of an Axial-Flow Turbine Rotor

<p>The unsteady flow field downstream of axial-flow turbine rotors at low Reynolds numbers was investigated experimentally using hot-wire probes. Reynolds number, based on rotor exit velocity and rotor chord length <math alttext="$Rea_{ext{out}, ext{RT}$"> <mrow> <...

Full description

Saved in:
Bibliographic Details
Main Authors: Matsunuma Takayuki, Tsutsui Yasukata
Format: Article
Language:English
Published: Wiley 2005-01-01
Series:International Journal of Rotating Machinery
Subjects:
Online Access:http://www.hindawi.net/access/get.aspx?journal=ijrm&volume=2005&pii=S1023621X04502063
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832549441854242816
author Matsunuma Takayuki
Tsutsui Yasukata
author_facet Matsunuma Takayuki
Tsutsui Yasukata
author_sort Matsunuma Takayuki
collection DOAJ
description <p>The unsteady flow field downstream of axial-flow turbine rotors at low Reynolds numbers was investigated experimentally using hot-wire probes. Reynolds number, based on rotor exit velocity and rotor chord length <math alttext="$Rea_{ext{out}, ext{RT}$"> <mrow> <msub> <mrow> <mo>Re</mo> </mrow> <mrow> <mtext>out</mtext><mo>,</mo><mtext>RT</mtext> </mrow> </msub> </mrow> </math>, was varied from <math alttext="$3.2 imes 10^4$"> <mn>3.2</mn><mo>&times;</mo><msup> <mn>10</mn> <mn>4</mn> </msup> </math> to <math alttext="$12.8imes10^4$"> <mn>12.8</mn><mo>&times;</mo><msup> <mn>10</mn> <mn>4</mn> </msup> </math> at intervals of <math alttext="$1.6 imes 10^4$"> <mn>1.0</mn><mo>&times;</mo><msup> <mn>10</mn> <mn>4</mn> </msup> </math> by changing the flow velocity of the wind tunnel. The time-averaged and time-dependent distributions of velocity and turbulence intensity were analyzed to determine the effect of Reynolds number. The reduction of Reynolds number had a marked influence on the turbine flow field. The regions of high turbulence intensity due to the wake and the secondary vortices were increased dramatically with the decreasing Reynolds number. The periodic fluctuation of the flow due to rotor-stator interaction also increased with the decreasing Reynolds number. The energy-dissipation thickness of the rotor midspan wake at the low Reynolds number <math alttext="$Rea_{ext{out}, ext{RT} = 3.2imes 10^4$"> <msub> <mo>Re</mo> <mrow> <mtext>out</mtext><mo>,</mo><mtext>RT</mtext> </mrow> </msub> <mo>=</mo><mn>3.2</mn><mo>&times;</mo><msup> <mn>10</mn> <mn>4</mn> </msup> </math> was <math alttext="$1.5$"> <mn>1.5</mn> </math> times larger than that at the high Reynolds number <math alttext="$Rea_{ext{out}, ext{RT} = 12.8 imes 10^4$"> <msub> <mo>Re</mo> <mrow> <mtext>out</mtext><mo>,</mo><mtext>RT</mtext> </mrow> </msub> <mo>=</mo><mn>12.8</mn><mo>&times;</mo><msup> <mn>10</mn> <mn>4</mn> </msup> </math>. The curve of the <math alttext="$-0.2$"> <mo>&minus;</mo><mn>0.2</mn> </math> power of the Reynolds number agreed with the measured energy-dissipation thickness at higher Reynolds numbers. However, the curve of the <math alttext="$-0.4$"> <mo>&minus;</mo><mn>0.4</mn> </math> power law fitted more closely than the curve of the <math alttext="$-0.2$"> <mo>&minus;</mo><mn>0.2</mn> </math> power law at lower Reynolds numbers below <math alttext="$6.4imes 10^4$"> <mn>6.4</mn><mo>&times;</mo><msup> <mn>10</mn> <mn>4</mn> </msup> </math>.</p>
format Article
id doaj-art-5d28e7e14a3c42f1a88d91f0659cdf97
institution Kabale University
issn 1023-621X
language English
publishDate 2005-01-01
publisher Wiley
record_format Article
series International Journal of Rotating Machinery
spelling doaj-art-5d28e7e14a3c42f1a88d91f0659cdf972025-02-03T06:11:21ZengWileyInternational Journal of Rotating Machinery1023-621X2005-01-0120051115Effects of Low Reynolds Number on Wake-Generated Unsteady Flow of an Axial-Flow Turbine RotorMatsunuma TakayukiTsutsui Yasukata<p>The unsteady flow field downstream of axial-flow turbine rotors at low Reynolds numbers was investigated experimentally using hot-wire probes. Reynolds number, based on rotor exit velocity and rotor chord length <math alttext="$Rea_{ext{out}, ext{RT}$"> <mrow> <msub> <mrow> <mo>Re</mo> </mrow> <mrow> <mtext>out</mtext><mo>,</mo><mtext>RT</mtext> </mrow> </msub> </mrow> </math>, was varied from <math alttext="$3.2 imes 10^4$"> <mn>3.2</mn><mo>&times;</mo><msup> <mn>10</mn> <mn>4</mn> </msup> </math> to <math alttext="$12.8imes10^4$"> <mn>12.8</mn><mo>&times;</mo><msup> <mn>10</mn> <mn>4</mn> </msup> </math> at intervals of <math alttext="$1.6 imes 10^4$"> <mn>1.0</mn><mo>&times;</mo><msup> <mn>10</mn> <mn>4</mn> </msup> </math> by changing the flow velocity of the wind tunnel. The time-averaged and time-dependent distributions of velocity and turbulence intensity were analyzed to determine the effect of Reynolds number. The reduction of Reynolds number had a marked influence on the turbine flow field. The regions of high turbulence intensity due to the wake and the secondary vortices were increased dramatically with the decreasing Reynolds number. The periodic fluctuation of the flow due to rotor-stator interaction also increased with the decreasing Reynolds number. The energy-dissipation thickness of the rotor midspan wake at the low Reynolds number <math alttext="$Rea_{ext{out}, ext{RT} = 3.2imes 10^4$"> <msub> <mo>Re</mo> <mrow> <mtext>out</mtext><mo>,</mo><mtext>RT</mtext> </mrow> </msub> <mo>=</mo><mn>3.2</mn><mo>&times;</mo><msup> <mn>10</mn> <mn>4</mn> </msup> </math> was <math alttext="$1.5$"> <mn>1.5</mn> </math> times larger than that at the high Reynolds number <math alttext="$Rea_{ext{out}, ext{RT} = 12.8 imes 10^4$"> <msub> <mo>Re</mo> <mrow> <mtext>out</mtext><mo>,</mo><mtext>RT</mtext> </mrow> </msub> <mo>=</mo><mn>12.8</mn><mo>&times;</mo><msup> <mn>10</mn> <mn>4</mn> </msup> </math>. The curve of the <math alttext="$-0.2$"> <mo>&minus;</mo><mn>0.2</mn> </math> power of the Reynolds number agreed with the measured energy-dissipation thickness at higher Reynolds numbers. However, the curve of the <math alttext="$-0.4$"> <mo>&minus;</mo><mn>0.4</mn> </math> power law fitted more closely than the curve of the <math alttext="$-0.2$"> <mo>&minus;</mo><mn>0.2</mn> </math> power law at lower Reynolds numbers below <math alttext="$6.4imes 10^4$"> <mn>6.4</mn><mo>&times;</mo><msup> <mn>10</mn> <mn>4</mn> </msup> </math>.</p>http://www.hindawi.net/access/get.aspx?journal=ijrm&volume=2005&pii=S1023621X04502063axial-flow turbineunsteady flowrotor-stator interactionlow Reynolds numberwakeenergy-dissipation thickness
spellingShingle Matsunuma Takayuki
Tsutsui Yasukata
Effects of Low Reynolds Number on Wake-Generated Unsteady Flow of an Axial-Flow Turbine Rotor
International Journal of Rotating Machinery
axial-flow turbine
unsteady flow
rotor-stator interaction
low Reynolds number
wake
energy-dissipation thickness
title Effects of Low Reynolds Number on Wake-Generated Unsteady Flow of an Axial-Flow Turbine Rotor
title_full Effects of Low Reynolds Number on Wake-Generated Unsteady Flow of an Axial-Flow Turbine Rotor
title_fullStr Effects of Low Reynolds Number on Wake-Generated Unsteady Flow of an Axial-Flow Turbine Rotor
title_full_unstemmed Effects of Low Reynolds Number on Wake-Generated Unsteady Flow of an Axial-Flow Turbine Rotor
title_short Effects of Low Reynolds Number on Wake-Generated Unsteady Flow of an Axial-Flow Turbine Rotor
title_sort effects of low reynolds number on wake generated unsteady flow of an axial flow turbine rotor
topic axial-flow turbine
unsteady flow
rotor-stator interaction
low Reynolds number
wake
energy-dissipation thickness
url http://www.hindawi.net/access/get.aspx?journal=ijrm&volume=2005&pii=S1023621X04502063
work_keys_str_mv AT matsunumatakayuki effectsoflowreynoldsnumberonwakegeneratedunsteadyflowofanaxialflowturbinerotor
AT tsutsuiyasukata effectsoflowreynoldsnumberonwakegeneratedunsteadyflowofanaxialflowturbinerotor