Seismic Damage Analysis of Concrete Gravity Dam Based on Wavelet Transform
The key to the dam damage assessment is analyzing the remaining seismic carrying capacity after an earthquake occurs. In this paper, taking Koyna concrete gravity dam as the object of study, the dynamic response and damage distribution of the dam are obtained based on the concrete damage plastic con...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2016-01-01
|
Series: | Shock and Vibration |
Online Access: | http://dx.doi.org/10.1155/2016/6841836 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832562470858784768 |
---|---|
author | Dunben Sun Qingwen Ren |
author_facet | Dunben Sun Qingwen Ren |
author_sort | Dunben Sun |
collection | DOAJ |
description | The key to the dam damage assessment is analyzing the remaining seismic carrying capacity after an earthquake occurs. In this paper, taking Koyna concrete gravity dam as the object of study, the dynamic response and damage distribution of the dam are obtained based on the concrete damage plastic constitutive model. By using time-frequency localization performance of wavelet transform, the distribution characteristics of wavelet energy for gravity dam dynamic response signal are revealed under the action of different amplitude earthquakes. It is concluded by numerical study that the wavelet energy is concentrated in low-frequency range with the improving of seismic amplitude. The ultimate peak seismic acceleration is obtained according to the concentration degree of low-frequency energy. The earthquake damage of the dam under the moderate-intensity earthquake is simulated and its residual seismic bearing capacity is further analyzed. The new global damage index of the dam is proposed and the overall damage degree of the dam can be distinguished using defined formula under given earthquake actions. The seismic bearing capacity of the intact Koyna dam is 591 gal considering the dam-water interaction and its residual seismic bearing capacity after simulating earthquake can be calculated. |
format | Article |
id | doaj-art-5d06c740daed40d2a09fae2a26deea7c |
institution | Kabale University |
issn | 1070-9622 1875-9203 |
language | English |
publishDate | 2016-01-01 |
publisher | Wiley |
record_format | Article |
series | Shock and Vibration |
spelling | doaj-art-5d06c740daed40d2a09fae2a26deea7c2025-02-03T01:22:32ZengWileyShock and Vibration1070-96221875-92032016-01-01201610.1155/2016/68418366841836Seismic Damage Analysis of Concrete Gravity Dam Based on Wavelet TransformDunben Sun0Qingwen Ren1School of Civil Engineering, Nanjing Forestry University, Nanjing 210037, ChinaCollege of Mechanics and Materials, Hohai University, Nanjing 210098, ChinaThe key to the dam damage assessment is analyzing the remaining seismic carrying capacity after an earthquake occurs. In this paper, taking Koyna concrete gravity dam as the object of study, the dynamic response and damage distribution of the dam are obtained based on the concrete damage plastic constitutive model. By using time-frequency localization performance of wavelet transform, the distribution characteristics of wavelet energy for gravity dam dynamic response signal are revealed under the action of different amplitude earthquakes. It is concluded by numerical study that the wavelet energy is concentrated in low-frequency range with the improving of seismic amplitude. The ultimate peak seismic acceleration is obtained according to the concentration degree of low-frequency energy. The earthquake damage of the dam under the moderate-intensity earthquake is simulated and its residual seismic bearing capacity is further analyzed. The new global damage index of the dam is proposed and the overall damage degree of the dam can be distinguished using defined formula under given earthquake actions. The seismic bearing capacity of the intact Koyna dam is 591 gal considering the dam-water interaction and its residual seismic bearing capacity after simulating earthquake can be calculated.http://dx.doi.org/10.1155/2016/6841836 |
spellingShingle | Dunben Sun Qingwen Ren Seismic Damage Analysis of Concrete Gravity Dam Based on Wavelet Transform Shock and Vibration |
title | Seismic Damage Analysis of Concrete Gravity Dam Based on Wavelet Transform |
title_full | Seismic Damage Analysis of Concrete Gravity Dam Based on Wavelet Transform |
title_fullStr | Seismic Damage Analysis of Concrete Gravity Dam Based on Wavelet Transform |
title_full_unstemmed | Seismic Damage Analysis of Concrete Gravity Dam Based on Wavelet Transform |
title_short | Seismic Damage Analysis of Concrete Gravity Dam Based on Wavelet Transform |
title_sort | seismic damage analysis of concrete gravity dam based on wavelet transform |
url | http://dx.doi.org/10.1155/2016/6841836 |
work_keys_str_mv | AT dunbensun seismicdamageanalysisofconcretegravitydambasedonwavelettransform AT qingwenren seismicdamageanalysisofconcretegravitydambasedonwavelettransform |