Synthesis of Specific ZnF Based Nanoparticles (ZnFe2O4): Antimicrobial Properties, Surface Characteristics, and Adsorption Activity for AB 29 Textile Dye

In this investigation, the color removal from synthetic wastewaters containing Acid Blue 29 (AB 29) dye was investigated by ZnF-based nanomaterials (ZnFe2O4) synthesized by the coprecipitation method in a batch system. SEM, FT–IR, and XRD analysis were used for the characterization of the nanopartic...

Full description

Saved in:
Bibliographic Details
Main Authors: Ferda Gönen, Gökhan Tekinerdoğan
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Journal of Nanotechnology
Online Access:http://dx.doi.org/10.1155/2020/3139701
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832566479347777536
author Ferda Gönen
Gökhan Tekinerdoğan
author_facet Ferda Gönen
Gökhan Tekinerdoğan
author_sort Ferda Gönen
collection DOAJ
description In this investigation, the color removal from synthetic wastewaters containing Acid Blue 29 (AB 29) dye was investigated by ZnF-based nanomaterials (ZnFe2O4) synthesized by the coprecipitation method in a batch system. SEM, FT–IR, and XRD analysis were used for the characterization of the nanoparticles (before and after adsorption), and the analysis results were compared with each other. The parameters such as pH, temperature, dye concentration, and nanoparticle dosage affecting color removal were examined systematically, and favorable color removal conditions were determined by the classical approach. From the experimental results, the favorable conditions with high removal efficiency for the adsorption were determined: removal temperature 35°C and the removal pH 2.0. At these experimental conditions, the adsorbed dye amount per unit mass of adsorbent and the percentage dye removal were determined as 1489.79 mg·g−1 and 98.83%, respectively. In the other part of the research, three different isotherm models (Langmuir, Freundlich, and Temkin) were used to examine the adsorption equilibrium data. Langmuir and especially Freundlich linear isotherm models provided the highest R2 regression coefficients, successfully. The kinetic data was evaluated by pseudo-first-order and pseudo-second-order kinetic model approach. It was observed that pseudo-second-order kinetic model best represented AB 29-ZnF adsorption kinetic data. The determined thermodynamic parameters such as ΔH, ΔS, and ΔG were proved that the AB 29-ZnF adsorption system was an exothermic (ΔH < 0), spontaneous, thermodynamically favorable (ΔG < 0), and stabilized system without any structural changes in sorbate and sorbents (ΔS<0).
format Article
id doaj-art-5cc123e27c3241aea629d1f0f6a20206
institution Kabale University
issn 1687-9503
1687-9511
language English
publishDate 2020-01-01
publisher Wiley
record_format Article
series Journal of Nanotechnology
spelling doaj-art-5cc123e27c3241aea629d1f0f6a202062025-02-03T01:04:07ZengWileyJournal of Nanotechnology1687-95031687-95112020-01-01202010.1155/2020/31397013139701Synthesis of Specific ZnF Based Nanoparticles (ZnFe2O4): Antimicrobial Properties, Surface Characteristics, and Adsorption Activity for AB 29 Textile DyeFerda Gönen0Gökhan Tekinerdoğan1Mersin University, Chemical Engineering Department, Mersin 33343, TurkeyMersin University, Chemical Engineering Department, Mersin 33343, TurkeyIn this investigation, the color removal from synthetic wastewaters containing Acid Blue 29 (AB 29) dye was investigated by ZnF-based nanomaterials (ZnFe2O4) synthesized by the coprecipitation method in a batch system. SEM, FT–IR, and XRD analysis were used for the characterization of the nanoparticles (before and after adsorption), and the analysis results were compared with each other. The parameters such as pH, temperature, dye concentration, and nanoparticle dosage affecting color removal were examined systematically, and favorable color removal conditions were determined by the classical approach. From the experimental results, the favorable conditions with high removal efficiency for the adsorption were determined: removal temperature 35°C and the removal pH 2.0. At these experimental conditions, the adsorbed dye amount per unit mass of adsorbent and the percentage dye removal were determined as 1489.79 mg·g−1 and 98.83%, respectively. In the other part of the research, three different isotherm models (Langmuir, Freundlich, and Temkin) were used to examine the adsorption equilibrium data. Langmuir and especially Freundlich linear isotherm models provided the highest R2 regression coefficients, successfully. The kinetic data was evaluated by pseudo-first-order and pseudo-second-order kinetic model approach. It was observed that pseudo-second-order kinetic model best represented AB 29-ZnF adsorption kinetic data. The determined thermodynamic parameters such as ΔH, ΔS, and ΔG were proved that the AB 29-ZnF adsorption system was an exothermic (ΔH < 0), spontaneous, thermodynamically favorable (ΔG < 0), and stabilized system without any structural changes in sorbate and sorbents (ΔS<0).http://dx.doi.org/10.1155/2020/3139701
spellingShingle Ferda Gönen
Gökhan Tekinerdoğan
Synthesis of Specific ZnF Based Nanoparticles (ZnFe2O4): Antimicrobial Properties, Surface Characteristics, and Adsorption Activity for AB 29 Textile Dye
Journal of Nanotechnology
title Synthesis of Specific ZnF Based Nanoparticles (ZnFe2O4): Antimicrobial Properties, Surface Characteristics, and Adsorption Activity for AB 29 Textile Dye
title_full Synthesis of Specific ZnF Based Nanoparticles (ZnFe2O4): Antimicrobial Properties, Surface Characteristics, and Adsorption Activity for AB 29 Textile Dye
title_fullStr Synthesis of Specific ZnF Based Nanoparticles (ZnFe2O4): Antimicrobial Properties, Surface Characteristics, and Adsorption Activity for AB 29 Textile Dye
title_full_unstemmed Synthesis of Specific ZnF Based Nanoparticles (ZnFe2O4): Antimicrobial Properties, Surface Characteristics, and Adsorption Activity for AB 29 Textile Dye
title_short Synthesis of Specific ZnF Based Nanoparticles (ZnFe2O4): Antimicrobial Properties, Surface Characteristics, and Adsorption Activity for AB 29 Textile Dye
title_sort synthesis of specific znf based nanoparticles znfe2o4 antimicrobial properties surface characteristics and adsorption activity for ab 29 textile dye
url http://dx.doi.org/10.1155/2020/3139701
work_keys_str_mv AT ferdagonen synthesisofspecificznfbasednanoparticlesznfe2o4antimicrobialpropertiessurfacecharacteristicsandadsorptionactivityforab29textiledye
AT gokhantekinerdogan synthesisofspecificznfbasednanoparticlesznfe2o4antimicrobialpropertiessurfacecharacteristicsandadsorptionactivityforab29textiledye