Shaking Table Test of a RC Frame with EPSC Latticed Concrete Infill Wall

The expansive polystyrene granule cement (EPSC) latticed concrete wall is a new type of energy-saving wall material with load-bearing, insulation, fireproof, and environmental protection characteristics. A series of shaking table tests were performed to investigate the seismic behavior of a full-sca...

Full description

Saved in:
Bibliographic Details
Main Authors: Baizan Tang, Xiaojun Li, Su Chen, Lihong Xiong
Format: Article
Language:English
Published: Wiley 2017-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2017/7163560
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The expansive polystyrene granule cement (EPSC) latticed concrete wall is a new type of energy-saving wall material with load-bearing, insulation, fireproof, and environmental protection characteristics. A series of shaking table tests were performed to investigate the seismic behavior of a full-scale reinforced concrete (RC) frame with EPSC latticed concrete infill wall, and data obtained from the shaking table test were analyzed. The experimental results indicate that the designed RC frame with EPSC latticed concrete infill wall has satisfactory seismic performance subjected to earthquakes, and the seismic responses of the model structure are more sensitive to input motions with more high frequency components and long duration. The EPSC latticed concrete infill wall provided high lateral stiffness so that the walls can be equivalent to a RC shear wall. The horizontal and vertical rebar, arranged in the concrete lattice beam and column, could effectively restrain the latticed concrete infill wall and RC frame. To achieve a more comprehensive evaluation on the performance of the RC frame with latticed concrete infill walls, further research on its seismic responses is expected by comparing with conventional infill walls and nonlinear analytical method.
ISSN:1070-9622
1875-9203