Commutator Theorems for Fractional Integral Operators on Weighted Morrey Spaces

Let L be the infinitesimal generator of an analytic semigroup on L2(Rn) with Gaussian kernel bounds, and let L-α/2 be the fractional integrals of L for 0<α<n. For any locally integrable function b, the commutators associated with L-α/2 are defined by [b,L-α/2](f)(x)=b(x)L-α/2(f)(x)-L-α/2(bf)(x...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhiheng Wang, Zengyan Si
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2014/413716
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832566207993085952
author Zhiheng Wang
Zengyan Si
author_facet Zhiheng Wang
Zengyan Si
author_sort Zhiheng Wang
collection DOAJ
description Let L be the infinitesimal generator of an analytic semigroup on L2(Rn) with Gaussian kernel bounds, and let L-α/2 be the fractional integrals of L for 0<α<n. For any locally integrable function b, the commutators associated with L-α/2 are defined by [b,L-α/2](f)(x)=b(x)L-α/2(f)(x)-L-α/2(bf)(x). When b∈BMO(ω) (weighted BMO space) or b∈BMO, the authors obtain the necessary and sufficient conditions for the boundedness of [b,L-α/2] on weighted Morrey spaces, respectively.
format Article
id doaj-art-5cb5616160434c76b4a444cc32a2defd
institution Kabale University
issn 1085-3375
1687-0409
language English
publishDate 2014-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-5cb5616160434c76b4a444cc32a2defd2025-02-03T01:04:42ZengWileyAbstract and Applied Analysis1085-33751687-04092014-01-01201410.1155/2014/413716413716Commutator Theorems for Fractional Integral Operators on Weighted Morrey SpacesZhiheng Wang0Zengyan Si1School of Computer Science and Technique, Henan Polytechnic University, Jiaozuo 454000, ChinaSchool of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo 454000, ChinaLet L be the infinitesimal generator of an analytic semigroup on L2(Rn) with Gaussian kernel bounds, and let L-α/2 be the fractional integrals of L for 0<α<n. For any locally integrable function b, the commutators associated with L-α/2 are defined by [b,L-α/2](f)(x)=b(x)L-α/2(f)(x)-L-α/2(bf)(x). When b∈BMO(ω) (weighted BMO space) or b∈BMO, the authors obtain the necessary and sufficient conditions for the boundedness of [b,L-α/2] on weighted Morrey spaces, respectively.http://dx.doi.org/10.1155/2014/413716
spellingShingle Zhiheng Wang
Zengyan Si
Commutator Theorems for Fractional Integral Operators on Weighted Morrey Spaces
Abstract and Applied Analysis
title Commutator Theorems for Fractional Integral Operators on Weighted Morrey Spaces
title_full Commutator Theorems for Fractional Integral Operators on Weighted Morrey Spaces
title_fullStr Commutator Theorems for Fractional Integral Operators on Weighted Morrey Spaces
title_full_unstemmed Commutator Theorems for Fractional Integral Operators on Weighted Morrey Spaces
title_short Commutator Theorems for Fractional Integral Operators on Weighted Morrey Spaces
title_sort commutator theorems for fractional integral operators on weighted morrey spaces
url http://dx.doi.org/10.1155/2014/413716
work_keys_str_mv AT zhihengwang commutatortheoremsforfractionalintegraloperatorsonweightedmorreyspaces
AT zengyansi commutatortheoremsforfractionalintegraloperatorsonweightedmorreyspaces