Reduced Histone H3 Lysine 9 Methylation Contributes to the Pathogenesis of Latent Autoimmune Diabetes in Adults via Regulation of SUV39H2 and KDM4C

Aims. Latent autoimmune diabetes in adults (LADA) is an autoimmune disease of which the mechanism is not clear. Emerging evidence suggests that histone methylation contributes to autoimmunity. Methods. Blood CD4+ T lymphocytes from 26 LADA patients and 26 healthy controls were isolated to detect his...

Full description

Saved in:
Bibliographic Details
Main Authors: Xi-yu Liu, Hong Li
Format: Article
Language:English
Published: Wiley 2017-01-01
Series:Journal of Diabetes Research
Online Access:http://dx.doi.org/10.1155/2017/8365762
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832563909916098560
author Xi-yu Liu
Hong Li
author_facet Xi-yu Liu
Hong Li
author_sort Xi-yu Liu
collection DOAJ
description Aims. Latent autoimmune diabetes in adults (LADA) is an autoimmune disease of which the mechanism is not clear. Emerging evidence suggests that histone methylation contributes to autoimmunity. Methods. Blood CD4+ T lymphocytes from 26 LADA patients and 26 healthy controls were isolated to detect histone H3 lysine 4 and H3 lysine 9 methylation status. Results. Reduced global H3 lysine 9 methylation was observed in LADA patients’ CD4+ T lymphocytes, compared to healthy controls (P < 0.05). H3 lysine 4 methylation was not statistically different. The reduced H3 lysine 9 methylation was associated with GADA titer but not correlated with glycosylated hemoglobin (HbA1c). When the LADA patient group was divided into those with complication and those without, relatively reduced global H3 lysine 9 methylation was observed in LADA patients with complication (P < 0.05). The expression of histone methyltransferase SUV39H2 for H3 lysine 9 methylation was downregulated in LADA patients, and the expression of histone demethylase KDM4C which made H3 lysine 9 demethylation was upregulated. Conclusion. The reduction of histone H3 lysine 9 methylation which may due to the downregulation of methyltransferase SUV39H2 and the upregulation of demethylase KDM4C was found in CD4+ T lymphocytes of LADA patients.
format Article
id doaj-art-5c8e0c063b894a8799c0c96108b7f023
institution Kabale University
issn 2314-6745
2314-6753
language English
publishDate 2017-01-01
publisher Wiley
record_format Article
series Journal of Diabetes Research
spelling doaj-art-5c8e0c063b894a8799c0c96108b7f0232025-02-03T01:12:11ZengWileyJournal of Diabetes Research2314-67452314-67532017-01-01201710.1155/2017/83657628365762Reduced Histone H3 Lysine 9 Methylation Contributes to the Pathogenesis of Latent Autoimmune Diabetes in Adults via Regulation of SUV39H2 and KDM4CXi-yu Liu0Hong Li1Department of Endocrinology, Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, ChinaDepartment of Endocrinology, Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, ChinaAims. Latent autoimmune diabetes in adults (LADA) is an autoimmune disease of which the mechanism is not clear. Emerging evidence suggests that histone methylation contributes to autoimmunity. Methods. Blood CD4+ T lymphocytes from 26 LADA patients and 26 healthy controls were isolated to detect histone H3 lysine 4 and H3 lysine 9 methylation status. Results. Reduced global H3 lysine 9 methylation was observed in LADA patients’ CD4+ T lymphocytes, compared to healthy controls (P < 0.05). H3 lysine 4 methylation was not statistically different. The reduced H3 lysine 9 methylation was associated with GADA titer but not correlated with glycosylated hemoglobin (HbA1c). When the LADA patient group was divided into those with complication and those without, relatively reduced global H3 lysine 9 methylation was observed in LADA patients with complication (P < 0.05). The expression of histone methyltransferase SUV39H2 for H3 lysine 9 methylation was downregulated in LADA patients, and the expression of histone demethylase KDM4C which made H3 lysine 9 demethylation was upregulated. Conclusion. The reduction of histone H3 lysine 9 methylation which may due to the downregulation of methyltransferase SUV39H2 and the upregulation of demethylase KDM4C was found in CD4+ T lymphocytes of LADA patients.http://dx.doi.org/10.1155/2017/8365762
spellingShingle Xi-yu Liu
Hong Li
Reduced Histone H3 Lysine 9 Methylation Contributes to the Pathogenesis of Latent Autoimmune Diabetes in Adults via Regulation of SUV39H2 and KDM4C
Journal of Diabetes Research
title Reduced Histone H3 Lysine 9 Methylation Contributes to the Pathogenesis of Latent Autoimmune Diabetes in Adults via Regulation of SUV39H2 and KDM4C
title_full Reduced Histone H3 Lysine 9 Methylation Contributes to the Pathogenesis of Latent Autoimmune Diabetes in Adults via Regulation of SUV39H2 and KDM4C
title_fullStr Reduced Histone H3 Lysine 9 Methylation Contributes to the Pathogenesis of Latent Autoimmune Diabetes in Adults via Regulation of SUV39H2 and KDM4C
title_full_unstemmed Reduced Histone H3 Lysine 9 Methylation Contributes to the Pathogenesis of Latent Autoimmune Diabetes in Adults via Regulation of SUV39H2 and KDM4C
title_short Reduced Histone H3 Lysine 9 Methylation Contributes to the Pathogenesis of Latent Autoimmune Diabetes in Adults via Regulation of SUV39H2 and KDM4C
title_sort reduced histone h3 lysine 9 methylation contributes to the pathogenesis of latent autoimmune diabetes in adults via regulation of suv39h2 and kdm4c
url http://dx.doi.org/10.1155/2017/8365762
work_keys_str_mv AT xiyuliu reducedhistoneh3lysine9methylationcontributestothepathogenesisoflatentautoimmunediabetesinadultsviaregulationofsuv39h2andkdm4c
AT hongli reducedhistoneh3lysine9methylationcontributestothepathogenesisoflatentautoimmunediabetesinadultsviaregulationofsuv39h2andkdm4c