Asymptotic Stability of the Golden-Section Control Law for Multi-Input and Multi-Output Linear Systems
This paper is concerned with the problem of the asymptotic stability of the characteristic model-based golden-section control law for multi-input and multi-output linear systems. First, by choosing a set of polynomial matrices of the objective function of the generalized least-square control, we pro...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2012-01-01
|
Series: | Journal of Applied Mathematics |
Online Access: | http://dx.doi.org/10.1155/2012/407409 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832545435476033536 |
---|---|
author | Duo-Qing Sun Zhu-Mei Sun |
author_facet | Duo-Qing Sun Zhu-Mei Sun |
author_sort | Duo-Qing Sun |
collection | DOAJ |
description | This paper is concerned with the problem of the asymptotic stability of the characteristic model-based golden-section control law for multi-input and multi-output linear systems. First, by choosing a set of polynomial matrices of the objective function of the generalized least-square control, we prove that the control law of the generalized least square can become the characteristic model-based golden-section control law. Then, based on both the stability result of the generalized least-square control system and the stability theory of matrix polynomial, the asymptotic stability of the closed loop system for the characteristic model under the control of the golden-section control law is proved for minimum phase system. |
format | Article |
id | doaj-art-5c5b3c6680604cc8b6ccd633ada4ca65 |
institution | Kabale University |
issn | 1110-757X 1687-0042 |
language | English |
publishDate | 2012-01-01 |
publisher | Wiley |
record_format | Article |
series | Journal of Applied Mathematics |
spelling | doaj-art-5c5b3c6680604cc8b6ccd633ada4ca652025-02-03T07:25:45ZengWileyJournal of Applied Mathematics1110-757X1687-00422012-01-01201210.1155/2012/407409407409Asymptotic Stability of the Golden-Section Control Law for Multi-Input and Multi-Output Linear SystemsDuo-Qing Sun0Zhu-Mei Sun1Institute of Mathematics and Systems Science, Hebei Normal University of Science and Technology, Qinhuangdao 066004, ChinaSchool of Optoelectronics, Beijing Institute of Technology, Beijing 100081, ChinaThis paper is concerned with the problem of the asymptotic stability of the characteristic model-based golden-section control law for multi-input and multi-output linear systems. First, by choosing a set of polynomial matrices of the objective function of the generalized least-square control, we prove that the control law of the generalized least square can become the characteristic model-based golden-section control law. Then, based on both the stability result of the generalized least-square control system and the stability theory of matrix polynomial, the asymptotic stability of the closed loop system for the characteristic model under the control of the golden-section control law is proved for minimum phase system.http://dx.doi.org/10.1155/2012/407409 |
spellingShingle | Duo-Qing Sun Zhu-Mei Sun Asymptotic Stability of the Golden-Section Control Law for Multi-Input and Multi-Output Linear Systems Journal of Applied Mathematics |
title | Asymptotic Stability of the Golden-Section Control Law for Multi-Input and Multi-Output Linear Systems |
title_full | Asymptotic Stability of the Golden-Section Control Law for Multi-Input and Multi-Output Linear Systems |
title_fullStr | Asymptotic Stability of the Golden-Section Control Law for Multi-Input and Multi-Output Linear Systems |
title_full_unstemmed | Asymptotic Stability of the Golden-Section Control Law for Multi-Input and Multi-Output Linear Systems |
title_short | Asymptotic Stability of the Golden-Section Control Law for Multi-Input and Multi-Output Linear Systems |
title_sort | asymptotic stability of the golden section control law for multi input and multi output linear systems |
url | http://dx.doi.org/10.1155/2012/407409 |
work_keys_str_mv | AT duoqingsun asymptoticstabilityofthegoldensectioncontrollawformultiinputandmultioutputlinearsystems AT zhumeisun asymptoticstabilityofthegoldensectioncontrollawformultiinputandmultioutputlinearsystems |