Fe<sub>3</sub>O<sub>4</sub>/Mulberry Stem Biochar as a Potential Amendment for Highly Arsenic-Contaminated Paddy Soil Remediation

Magnetite-loaded biochar has recently received attention owing to its ability to remove arsenic from contaminated soil. In this study, mulberry stem biochar (MBC) and Fe<sub>3</sub>O<sub>4</sub>-loaded mulberry stem biochar (Fe<sub>3</sub>O<sub>4</sub>...

Full description

Saved in:
Bibliographic Details
Main Authors: Ziling Tang, Meina Liang, Yanmei Ding, Chongmin Liu, Qing Zhang, Dunqiu Wang, Xuehong Zhang
Format: Article
Language:English
Published: MDPI AG 2024-10-01
Series:Toxics
Subjects:
Online Access:https://www.mdpi.com/2305-6304/12/11/765
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Magnetite-loaded biochar has recently received attention owing to its ability to remove arsenic from contaminated soil. In this study, mulberry stem biochar (MBC) and Fe<sub>3</sub>O<sub>4</sub>-loaded mulberry stem biochar (Fe<sub>3</sub>O<sub>4</sub>@MBC) were produced and used in a 100-day incubation experiment to investigate their performance in the stabilization of arsenic in paddy soil severely polluted by the As (237.68 mg·kg<sup>−1</sup>) mechanism. Incubation experiments showed that Fe<sub>3</sub>O<sub>4</sub>@MBC was more effective in immobilizing As after incubation for 100 days. Moreover, adding Fe<sub>3</sub>O<sub>4</sub>@MBC facilitated the transformation of exchangeable heavy metals into organic-bound and residual forms, thereby reducing As available concentrations, mobility, and bioavailability in the soil, and elevating slightly the soil pH and dissolved organic carbon (DOC). The concentration of TCLP-extractable As (As<sub>TCLP</sub>) in contaminated soil was reduced from 93.85 to 7.64 μg·L<sup>−1</sup> within 10 d, below the safety limit for drinking water set by the World Health Organization (WHO). The characterization results of Fe<sub>3</sub>O<sub>4</sub>@MBC after incubation indicated that the mechanisms for As passivation are linked to redox reactions, complexation, electrostatic attraction, surface adsorption, and coprecipitation. Conclusively, Fe<sub>3</sub>O<sub>4</sub>@MBC is a promising amendment in highly As-contaminated soil and provides a theoretical reference in such polluted paddy soil remediation.
ISSN:2305-6304