Visual experience orthogonalizes visual cortical stimulus responses via population code transformation

Summary: Sensory and behavioral experience can alter visual cortical stimulus coding, but the precise form of this plasticity is unclear. We measured orientation tuning in 4,000-neuron populations of mouse V1 before and after training on a visuomotor task. Changes to single-cell tuning curves appear...

Full description

Saved in:
Bibliographic Details
Main Authors: Samuel W. Failor, Matteo Carandini, Kenneth D. Harris
Format: Article
Language:English
Published: Elsevier 2025-02-01
Series:Cell Reports
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124725000063
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Summary: Sensory and behavioral experience can alter visual cortical stimulus coding, but the precise form of this plasticity is unclear. We measured orientation tuning in 4,000-neuron populations of mouse V1 before and after training on a visuomotor task. Changes to single-cell tuning curves appeared complex, including development of asymmetries and of multiple peaks. Nevertheless, these complex tuning curve transformations can be explained by a simple equation: a convex transformation suppressing responses to task stimuli specifically in cells responding at intermediate levels. The strength of the transformation varies across trials, suggesting a dynamic circuit mechanism rather than static synaptic plasticity. The transformation results in sparsening and orthogonalization of population codes for task stimuli. It cannot improve the performance of an optimal stimulus decoder, which is already perfect even for naive codes, but it improves the performance of a suboptimal decoder model with inductive bias as might be found in downstream readout circuits.
ISSN:2211-1247