Finding the Optimal Convolutional Kernel Size for Semantic Segmentation of Pole-like Objects in Lidar Point Clouds
Pole-like objects (PLOs) are important street assets in urban environments, yet current deep learning methods often underperform in their segmentation compared to other objects. The main challenge is determining the right kernel size to effectively understand the unique structure of PLOs with an app...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Copernicus Publications
2025-08-01
|
| Series: | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
| Online Access: | https://isprs-archives.copernicus.org/articles/XLVIII-G-2025/1747/2025/isprs-archives-XLVIII-G-2025-1747-2025.pdf |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Be the first to leave a comment!