Lateral-Torsional Coupling Characteristics of a Two-Stage Planetary Gear Rotor System

Planetary gears are one part of the whole transmission chain, and the dynamics and vibration characteristics of them are strongly coupled with external rotors. In this paper, to demonstrate the interaction between multistage planetary gears and external rotors as well as investigate the lateral-tors...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhipeng Wang, Yunbo Yuan, Zhiyong Wang, Wei Liu, Yibin Guo, Donghua Wang
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2018/4293475
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Planetary gears are one part of the whole transmission chain, and the dynamics and vibration characteristics of them are strongly coupled with external rotors. In this paper, to demonstrate the interaction between multistage planetary gears and external rotors as well as investigate the lateral-torsional coupling characteristics of them, a coupling model of a two-stage planetary gear rotor system is proposed. In such a model, the two-stage planetary gear subsystem is established as a lumped-parameter model and the external rotor subsystem is established as a finite element model. The vibration mode distribution properties and lateral-torsional coupling characteristics are both analyzed by modal strain energy. Three different conditions are considered: uncoupled, partially coupled, and fully coupled. The results indicate that the coupling among multiple subsystems and the lateral-torsional coupling mainly exist in the low-mode region. Natural frequencies dominated by the two-stage planetary gear subsystem are sensitive to coupled conditions, whereas natural frequencies dominated by the input rotor subsystem are remarkably insensitive to coupled conditions. Furthermore, the natural frequency of the first torsional mode can be obtained only in the fully coupled condition. Experiments are implemented to obtain natural frequencies, and the experiment results validate the numerical results.
ISSN:1070-9622
1875-9203