Pre-miRNA loop nucleotides control the distinct activities of mir-181a-1 and mir-181c in early T cell development.

<h4>Background</h4>Mature miRNAs can often be classified into large families, consisting of members with identical seeds (nucleotides 2 through 7 of the mature miRNAs) and highly homologous approximately 21-nucleotide (nt) mature miRNA sequences. However, it is unclear whether members of...

Full description

Saved in:
Bibliographic Details
Main Authors: Gwen Liu, Hyeyoung Min, Sibiao Yue, Chang-Zheng Chen
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2008-01-01
Series:PLoS ONE
Online Access:https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0003592&type=printable
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:<h4>Background</h4>Mature miRNAs can often be classified into large families, consisting of members with identical seeds (nucleotides 2 through 7 of the mature miRNAs) and highly homologous approximately 21-nucleotide (nt) mature miRNA sequences. However, it is unclear whether members of a miRNA gene family, which encode identical or nearly identical mature miRNAs, are functionally interchangeable in vivo.<h4>Methods and findings</h4>We show that mir-181a-1, but not mir-181c, can promote CD4 and CD8 double-positive (DP) T cell development when ectopically expressed in thymic progenitor cells. The distinct activities of mir-181a-1 and mir-181c are largely determined by their unique pre-miRNA loop nucleotides-not by the one-nucleotide difference in their mature miRNA sequences. Moreover, the activity of mir-181a-1 on DP cell development can be quantitatively influenced by nucleotide changes in its pre-miRNA loop region. We find that both the strength and the functional specificity of miRNA genes can be controlled by the pre-miRNA loop nucleotides. Intriguingly, we note that mutations in the pre-miRNA loop regions affect pre-miRNA and mature miRNA processing, but find no consistent correlation between the effects of pre-miRNA loop mutations on the levels of mature miRNAs and the activities of the mir-181a-1/c genes.<h4>Conclusions</h4>These results demonstrate that pre-miRNA loop nucleotides play a critical role in controlling the activity of miRNA genes and that members of the same miRNA gene families could have evolved to achieve different activities via alterations in their pre-miRNA loop sequences, while maintaining identical or nearly identical mature miRNA sequences.
ISSN:1932-6203