Dewetting dynamics of metal/metallic coated ceramic systems at high temperatures
This work focuses on kinetic analysis of high-temperature dewetting at metal/ceramic interfaces. Metal films were deposited on ceramics via magnetron sputtering, followed by wetting tests with tin, aluminum, and copper droplets. Results revealed asymmetric wetting-dewetting, indicating strong chemic...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2025-01-01
|
Series: | Applied Surface Science Advances |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2666523924000953 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This work focuses on kinetic analysis of high-temperature dewetting at metal/ceramic interfaces. Metal films were deposited on ceramics via magnetron sputtering, followed by wetting tests with tin, aluminum, and copper droplets. Results revealed asymmetric wetting-dewetting, indicating strong chemical bonds instead of reversible physical ones at high temperatures, deviating from traditional model predictions. Current room-temperature dewetting models (including hydrodynamic model, molecular kinetic theory and the combined model) fail to accurately describe high-temperature dewetting dynamics on metallized ceramics. Dewetting is governed by the metal film diffusion in droplets or the decomposition reaction kinetic at triple line, seen in diffusion-limited model in Sn/Ag-Ti on ZrO2 and Sn/FeCoNiCrCu coated h-BN, and decomposition reaction model in Cu/FeCoNiCrCu on sapphire. These insights are crucial for designing stable high-temperature metallurgical interfaces. |
---|---|
ISSN: | 2666-5239 |