Approximation and the Multidimensional Moment Problem

The aim of this paper is to apply polynomial approximation by sums of squares in several real variables to the multidimensional moment problem. The general idea is to approximate any element of the positive cone of the involved function space with sums whose terms are squares of polynomials. First,...

Full description

Saved in:
Bibliographic Details
Main Author: Octav Olteanu
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/14/1/59
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832589115121467392
author Octav Olteanu
author_facet Octav Olteanu
author_sort Octav Olteanu
collection DOAJ
description The aim of this paper is to apply polynomial approximation by sums of squares in several real variables to the multidimensional moment problem. The general idea is to approximate any element of the positive cone of the involved function space with sums whose terms are squares of polynomials. First, approximations on a Cartesian product of intervals by polynomials taking nonnegative values on the entire <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mi mathvariant="double-struck">R</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></semantics></math></inline-formula>, or on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mrow><mi mathvariant="double-struck">R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mn>2</mn></mrow></msubsup></mrow></semantics></math></inline-formula>, are considered. Such results are discussed in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mrow><mi>L</mi></mrow><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mfenced separators="|"><mrow><msup><mrow><mi mathvariant="double-struck">R</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfenced></mrow></semantics></math></inline-formula> and in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><mfenced separators="|"><mrow><msub><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>×</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></mfenced></mrow></semantics></math></inline-formula>-type spaces, for a large class of measures, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>,</mo></mrow></semantics></math></inline-formula> for compact subsets <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>S</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><mo> </mo><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></mrow></semantics></math></inline-formula> of the interval <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo></mrow></semantics></math></inline-formula>. Thus, on such subsets, any nonnegative function is a limit of sums of squares. Secondly, applications to the bidimensional moment problem are derived in terms of quadratic expressions. As is well known, in multidimensional cases, such results are difficult to prove. Directions for future work are also outlined.
format Article
id doaj-art-5ae620caad5546e9a4a96264a188ee12
institution Kabale University
issn 2075-1680
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj-art-5ae620caad5546e9a4a96264a188ee122025-01-24T13:22:17ZengMDPI AGAxioms2075-16802025-01-011415910.3390/axioms14010059Approximation and the Multidimensional Moment ProblemOctav Olteanu0Independent Researcher, 060042 Bucharest, RomaniaThe aim of this paper is to apply polynomial approximation by sums of squares in several real variables to the multidimensional moment problem. The general idea is to approximate any element of the positive cone of the involved function space with sums whose terms are squares of polynomials. First, approximations on a Cartesian product of intervals by polynomials taking nonnegative values on the entire <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mi mathvariant="double-struck">R</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></semantics></math></inline-formula>, or on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mrow><mi mathvariant="double-struck">R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mn>2</mn></mrow></msubsup></mrow></semantics></math></inline-formula>, are considered. Such results are discussed in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mrow><mi>L</mi></mrow><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mfenced separators="|"><mrow><msup><mrow><mi mathvariant="double-struck">R</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfenced></mrow></semantics></math></inline-formula> and in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><mfenced separators="|"><mrow><msub><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>×</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></mfenced></mrow></semantics></math></inline-formula>-type spaces, for a large class of measures, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>,</mo></mrow></semantics></math></inline-formula> for compact subsets <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>S</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><mo> </mo><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></mrow></semantics></math></inline-formula> of the interval <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo></mrow></semantics></math></inline-formula>. Thus, on such subsets, any nonnegative function is a limit of sums of squares. Secondly, applications to the bidimensional moment problem are derived in terms of quadratic expressions. As is well known, in multidimensional cases, such results are difficult to prove. Directions for future work are also outlined.https://www.mdpi.com/2075-1680/14/1/59polynomial approximationseveral dimensionssums of squaresmoment problemdeterminate measure
spellingShingle Octav Olteanu
Approximation and the Multidimensional Moment Problem
Axioms
polynomial approximation
several dimensions
sums of squares
moment problem
determinate measure
title Approximation and the Multidimensional Moment Problem
title_full Approximation and the Multidimensional Moment Problem
title_fullStr Approximation and the Multidimensional Moment Problem
title_full_unstemmed Approximation and the Multidimensional Moment Problem
title_short Approximation and the Multidimensional Moment Problem
title_sort approximation and the multidimensional moment problem
topic polynomial approximation
several dimensions
sums of squares
moment problem
determinate measure
url https://www.mdpi.com/2075-1680/14/1/59
work_keys_str_mv AT octavolteanu approximationandthemultidimensionalmomentproblem