The Application of Parallel Robotics to Investigate the Effect of Lumbar Bracing on Trunk Muscle Activity

Lumbar bracing is prescribed frequently for disability caused by low back pain; however, investigations into this practice demonstrate a range of patient outcomes. This inconsistency may arise from the practice of employing voluntary, single-axis trunk movements when investigating braces. Alternativ...

Full description

Saved in:
Bibliographic Details
Main Authors: Gregory N. Kawchuk, Narasimha G. Prasad, Jonathan Glass, Carolyn Knight, Serena Third, Daniel Timmermans
Format: Article
Language:English
Published: Wiley 2010-01-01
Series:Applied Bionics and Biomechanics
Online Access:http://dx.doi.org/10.1080/11762322.2010.512433
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Lumbar bracing is prescribed frequently for disability caused by low back pain; however, investigations into this practice demonstrate a range of patient outcomes. This inconsistency may arise from the practice of employing voluntary, single-axis trunk movements when investigating braces. Alternatively, this study employed a parallel robot to create a standardised, multi-axis testing environment. Surface electromyographic (sEMG) data were collected from the trunk of 24 asymptomatic participants, who were seated on the robot, tilted to 15°, then circumducted while attempting to maintain an upright posture. Multiple trials were performed for three randomised conditions: non-braced, soft-material brace and stiff-material brace. As expected, the sEMG activity was significantly reduced in the majority of muscle responses (201/240). Unexpectedly, a paradoxical increase in the sEMG activity was observed in 39/240 responses. While lumbar bracing reduces the sEMG activity on average, these data suggest the existence of an infrequent paradoxical response that may provide a possible explanation for the discordant results observed in previous bracing investigations.
ISSN:1176-2322
1754-2103