Synchronization of the Coupled Distributed Parameter System with Time Delay via Proportional-Spatial Derivative Control

By combining parabolic partial differential equation (PDE) theory with Lyapunov technique, the synchronization is studied for a class of coupled distributed parameter systems (DPS) described by PDEs. First, based on Kronecker product and Lyapunov functional, some easy-to-test sufficient condition is...

Full description

Saved in:
Bibliographic Details
Main Authors: Kun Yuan, Abdulaziz Alofi, Jinde Cao, Abdullah Al-Mazrooei, Ahmed Elaiw
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2014/418258
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:By combining parabolic partial differential equation (PDE) theory with Lyapunov technique, the synchronization is studied for a class of coupled distributed parameter systems (DPS) described by PDEs. First, based on Kronecker product and Lyapunov functional, some easy-to-test sufficient condition is given to ensure the synchronization of coupled DPS with time delay. Secondly, in the case that the whole coupled system cannot synchronize by itself, the proportional-spatial derivative (P-sD) state feedback controller is designed and applied to force the network to synchronize. The sufficient condition on the existence of synchronization controller is given in terms of a set of linear matrix inequalities. Finally, the effectiveness of the proposed control design methodology is demonstrated in numerical simulations.
ISSN:1026-0226
1607-887X