Cusped and Smooth Solitons for the Generalized Camassa-Holm Equation on the Nonzero Constant Pedestal
We investigate the traveling solitary wave solutions of the generalized Camassa-Holm equation ut - uxxt + 3u2ux=2uxuxx + uuxxx on the nonzero constant pedestal limξ→±∞uξ=A. Our procedure shows that the generalized Camassa-Holm equation with nonzero constant boundary has cusped and smooth soliton so...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2014-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2014/423063 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We investigate the traveling solitary wave solutions of the generalized Camassa-Holm equation ut - uxxt + 3u2ux=2uxuxx + uuxxx on the nonzero constant pedestal limξ→±∞uξ=A. Our procedure shows that the generalized Camassa-Holm equation with nonzero constant boundary has cusped and smooth soliton solutions. Mathematical analysis and numerical simulations are provided for these traveling soliton solutions of the generalized Camassa-Holm equation. Some exact explicit solutions are obtained. We show some graphs to explain our these solutions. |
---|---|
ISSN: | 1085-3375 1687-0409 |