Groupes de Brauer algébriques modulo les constantes d’espaces homogènes et leurs compactifications
Let $X$ be a smooth, geometrically integral variety without non-constant invertible functions over a field $K$. Then the quotient of the “algebraic” Brauer group of $X$ by $\mathrm{Br}\,K$ injects into $\mathrm{H}^1(K,\mathrm{Pic}{\overline{X}})$. We show that this inclusion is not always an isomorp...
Saved in:
Main Author: | Linh, Nguyen Manh |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2024-07-01
|
Series: | Comptes Rendus. Mathématique |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.587/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Histoires d’espaces. Éléments de conclusion
by: Brigitte Boissavit-Camus, et al.
Published: (2023-04-01) -
A la recherche d’espaces invisibles de la mobilité
by: Sandrine Depeau, et al.
Published: (2014-12-01) -
La critique d’espace public : dire le politique du projet de paysage
by: Collectif Critique et projet de paysage
Published: (2021-09-01) -
Le Collage comme outil exploratoire collectif dans la conception d’espaces publics
by: Sonia Curnier, et al.
Published: (2023-06-01) -
The Smirnov compactification as a quotient space of the Stone-Čech compactification
by: T. B. M. McMaster
Published: (1988-01-01)