On Behavioral Response of 3D Squeezing Flow of Nanofluids in a Rotating Channel

In this article, a behavioral study of three-dimensional (3D) squeezing flow of nanofluids with magnetic effect in a rotating channel has been performed. Using Navier–Stokes equations along with suitable similarity transformations, a nonlinear coupled ordinary differential system has been derived wh...

Full description

Saved in:
Bibliographic Details
Main Authors: Mubashir Qayyum, Omar Khan, Thabet Abdeljawad, Naveed Imran, Muhammad Sohail, Wael Al-Kouz
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Complexity
Online Access:http://dx.doi.org/10.1155/2020/8680916
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this article, a behavioral study of three-dimensional (3D) squeezing flow of nanofluids with magnetic effect in a rotating channel has been performed. Using Navier–Stokes equations along with suitable similarity transformations, a nonlinear coupled ordinary differential system has been derived which models the 3D squeezing flow of nanofluids with lower permeable stretching porous wall where the channel is also rotating. The base fluid in the channel is considered to be water that contains different nanoparticles including silicon, copper, silver, gold, and platinum. The homotopy perturbation method (HPM) is employed for the solution of highly nonlinear coupled system. For validation purpose, system of equations is also solved through the Runge–Kutta–Fehlberg (RK45) scheme and results are compared with homotopy solutions, and excellent agreement has been found between analytical and numerical results. Also, validation has been performed by finding average residual error of the coupled system. Furthermore, the effects of various parameters such as nanoparticle volume fraction, suction parameter, characteristic parameter of the flow, magnetic parameter, rotation parameter, and different types of nanoparticles are studied graphically.
ISSN:1076-2787
1099-0526