The spatial dynamics of a zebrafish model with cross-diffusions
This paper investigates the spatial dynamics of a zebrafish model with cross-diffusions. Sufficient conditions for Hopf bifurcation and Turing bifurcation are obtained by analyzing the associated characteristic equation. In addition, we deduce amplitude equations based on multiple-scale analysis, an...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2017-07-01
|
Series: | Mathematical Biosciences and Engineering |
Subjects: | |
Online Access: | https://www.aimspress.com/article/doi/10.3934/mbe.2017054 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper investigates the spatial dynamics of a zebrafish model with cross-diffusions. Sufficient conditions for Hopf bifurcation and Turing bifurcation are obtained by analyzing the associated characteristic equation. In addition, we deduce amplitude equations based on multiple-scale analysis, and further by analyzing amplitude equations five categories of Turing patterns are gained. Finally, numerical simulation results are presented to validate the theoretical analysis. Furthermore, some examples demonstrate that cross-diffusions have an effect on the selection of patterns, which explains the diversity of zebrafish pattern very well. |
---|---|
ISSN: | 1551-0018 |