Analytic-Numerical Solution of Random Boundary Value Heat Problems in a Semi-Infinite Bar
This paper deals with the analytic-numerical solution of random heat problems for the temperature distribution in a semi-infinite bar with different boundary value conditions. We apply a random Fourier sine and cosine transform mean square approach. Random operational mean square calculus is develop...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2013-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2013/676372 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832553745088512000 |
---|---|
author | M.-C. Casabán J.-C. Cortés B. García-Mora L. Jódar |
author_facet | M.-C. Casabán J.-C. Cortés B. García-Mora L. Jódar |
author_sort | M.-C. Casabán |
collection | DOAJ |
description | This paper deals with the analytic-numerical solution of random heat problems for the temperature distribution in a semi-infinite bar with different boundary value conditions. We apply a random Fourier sine and cosine transform mean square approach. Random operational mean square calculus is developed for the introduced transforms. Using previous results about random ordinary differential equations, a closed form solution stochastic process is firstly obtained. Then, expectation and variance are computed. Illustrative numerical examples are included. |
format | Article |
id | doaj-art-594cf57fea4e4aefadc79797705406af |
institution | Kabale University |
issn | 1085-3375 1687-0409 |
language | English |
publishDate | 2013-01-01 |
publisher | Wiley |
record_format | Article |
series | Abstract and Applied Analysis |
spelling | doaj-art-594cf57fea4e4aefadc79797705406af2025-02-03T05:53:21ZengWileyAbstract and Applied Analysis1085-33751687-04092013-01-01201310.1155/2013/676372676372Analytic-Numerical Solution of Random Boundary Value Heat Problems in a Semi-Infinite BarM.-C. Casabán0J.-C. Cortés1B. García-Mora2L. Jódar3Instituto Universitario de Matemática Multidisciplinar, Building 8G Access C, 2nd Floor, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, SpainInstituto Universitario de Matemática Multidisciplinar, Building 8G Access C, 2nd Floor, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, SpainInstituto Universitario de Matemática Multidisciplinar, Building 8G Access C, 2nd Floor, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, SpainInstituto Universitario de Matemática Multidisciplinar, Building 8G Access C, 2nd Floor, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, SpainThis paper deals with the analytic-numerical solution of random heat problems for the temperature distribution in a semi-infinite bar with different boundary value conditions. We apply a random Fourier sine and cosine transform mean square approach. Random operational mean square calculus is developed for the introduced transforms. Using previous results about random ordinary differential equations, a closed form solution stochastic process is firstly obtained. Then, expectation and variance are computed. Illustrative numerical examples are included.http://dx.doi.org/10.1155/2013/676372 |
spellingShingle | M.-C. Casabán J.-C. Cortés B. García-Mora L. Jódar Analytic-Numerical Solution of Random Boundary Value Heat Problems in a Semi-Infinite Bar Abstract and Applied Analysis |
title | Analytic-Numerical Solution of Random Boundary Value Heat Problems in a Semi-Infinite Bar |
title_full | Analytic-Numerical Solution of Random Boundary Value Heat Problems in a Semi-Infinite Bar |
title_fullStr | Analytic-Numerical Solution of Random Boundary Value Heat Problems in a Semi-Infinite Bar |
title_full_unstemmed | Analytic-Numerical Solution of Random Boundary Value Heat Problems in a Semi-Infinite Bar |
title_short | Analytic-Numerical Solution of Random Boundary Value Heat Problems in a Semi-Infinite Bar |
title_sort | analytic numerical solution of random boundary value heat problems in a semi infinite bar |
url | http://dx.doi.org/10.1155/2013/676372 |
work_keys_str_mv | AT mccasaban analyticnumericalsolutionofrandomboundaryvalueheatproblemsinasemiinfinitebar AT jccortes analyticnumericalsolutionofrandomboundaryvalueheatproblemsinasemiinfinitebar AT bgarciamora analyticnumericalsolutionofrandomboundaryvalueheatproblemsinasemiinfinitebar AT ljodar analyticnumericalsolutionofrandomboundaryvalueheatproblemsinasemiinfinitebar |