Analytic-Numerical Solution of Random Boundary Value Heat Problems in a Semi-Infinite Bar

This paper deals with the analytic-numerical solution of random heat problems for the temperature distribution in a semi-infinite bar with different boundary value conditions. We apply a random Fourier sine and cosine transform mean square approach. Random operational mean square calculus is develop...

Full description

Saved in:
Bibliographic Details
Main Authors: M.-C. Casabán, J.-C. Cortés, B. García-Mora, L. Jódar
Format: Article
Language:English
Published: Wiley 2013-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2013/676372
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832553745088512000
author M.-C. Casabán
J.-C. Cortés
B. García-Mora
L. Jódar
author_facet M.-C. Casabán
J.-C. Cortés
B. García-Mora
L. Jódar
author_sort M.-C. Casabán
collection DOAJ
description This paper deals with the analytic-numerical solution of random heat problems for the temperature distribution in a semi-infinite bar with different boundary value conditions. We apply a random Fourier sine and cosine transform mean square approach. Random operational mean square calculus is developed for the introduced transforms. Using previous results about random ordinary differential equations, a closed form solution stochastic process is firstly obtained. Then, expectation and variance are computed. Illustrative numerical examples are included.
format Article
id doaj-art-594cf57fea4e4aefadc79797705406af
institution Kabale University
issn 1085-3375
1687-0409
language English
publishDate 2013-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-594cf57fea4e4aefadc79797705406af2025-02-03T05:53:21ZengWileyAbstract and Applied Analysis1085-33751687-04092013-01-01201310.1155/2013/676372676372Analytic-Numerical Solution of Random Boundary Value Heat Problems in a Semi-Infinite BarM.-C. Casabán0J.-C. Cortés1B. García-Mora2L. Jódar3Instituto Universitario de Matemática Multidisciplinar, Building 8G Access C, 2nd Floor, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, SpainInstituto Universitario de Matemática Multidisciplinar, Building 8G Access C, 2nd Floor, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, SpainInstituto Universitario de Matemática Multidisciplinar, Building 8G Access C, 2nd Floor, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, SpainInstituto Universitario de Matemática Multidisciplinar, Building 8G Access C, 2nd Floor, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, SpainThis paper deals with the analytic-numerical solution of random heat problems for the temperature distribution in a semi-infinite bar with different boundary value conditions. We apply a random Fourier sine and cosine transform mean square approach. Random operational mean square calculus is developed for the introduced transforms. Using previous results about random ordinary differential equations, a closed form solution stochastic process is firstly obtained. Then, expectation and variance are computed. Illustrative numerical examples are included.http://dx.doi.org/10.1155/2013/676372
spellingShingle M.-C. Casabán
J.-C. Cortés
B. García-Mora
L. Jódar
Analytic-Numerical Solution of Random Boundary Value Heat Problems in a Semi-Infinite Bar
Abstract and Applied Analysis
title Analytic-Numerical Solution of Random Boundary Value Heat Problems in a Semi-Infinite Bar
title_full Analytic-Numerical Solution of Random Boundary Value Heat Problems in a Semi-Infinite Bar
title_fullStr Analytic-Numerical Solution of Random Boundary Value Heat Problems in a Semi-Infinite Bar
title_full_unstemmed Analytic-Numerical Solution of Random Boundary Value Heat Problems in a Semi-Infinite Bar
title_short Analytic-Numerical Solution of Random Boundary Value Heat Problems in a Semi-Infinite Bar
title_sort analytic numerical solution of random boundary value heat problems in a semi infinite bar
url http://dx.doi.org/10.1155/2013/676372
work_keys_str_mv AT mccasaban analyticnumericalsolutionofrandomboundaryvalueheatproblemsinasemiinfinitebar
AT jccortes analyticnumericalsolutionofrandomboundaryvalueheatproblemsinasemiinfinitebar
AT bgarciamora analyticnumericalsolutionofrandomboundaryvalueheatproblemsinasemiinfinitebar
AT ljodar analyticnumericalsolutionofrandomboundaryvalueheatproblemsinasemiinfinitebar