Reliability Evaluation of NPP’s Power Supply System Based on Improved GO-FLOW Method

NPP’s power supply system is repairable and there is common cause failure between the components. The repair rate is introduced and total signaling is considered in the improved GO-FLOW method, aimed at reliability analysis for NPP’s power supply system. Traditional GO-FLOW operators’ algorithms are...

Full description

Saved in:
Bibliographic Details
Main Authors: Jie Zhao, Tian Liu, Yu Zhao, Dichen Liu, Xiaodong Yang, Yi Lin, Zhangsui Lin, Yong Lei
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:Science and Technology of Nuclear Installations
Online Access:http://dx.doi.org/10.1155/2016/1245387
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:NPP’s power supply system is repairable and there is common cause failure between the components. The repair rate is introduced and total signaling is considered in the improved GO-FLOW method, aimed at reliability analysis for NPP’s power supply system. Traditional GO-FLOW operators’ algorithms are improved. Comprehensively considering the effect of total signaling flow in the power supply system, the equivalent reliability parameter model and common cause failure probability model of multimodal repairable components are constructed. The improved GO-FLOW model of NPP’s power supply system is set up. Based on the proposed model, components’ reliability parameters are computed. The failure probability time-varying trend in thirty years, respectively, of NPP’s offsite power source and power supply system, is simulated and analyzed. Compared with calculation results of dynamic fault tree analysis method, the validity and the simplicity of the improved GO-FLOW method are verified. The effectiveness and applicability of the improved GO-FLOW model for NPP’s power supply system are proved by simulation examples.
ISSN:1687-6075
1687-6083