Structure Preserving Numerical Analysis of Reaction-Diffusion Models
In this paper, we examine two structure preserving numerical finite difference methods for solving the various reaction-diffusion models in one dimension, appearing in chemistry and biology. These are the finite difference methods in splitting environment, namely, operator splitting nonstandard fini...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2022-01-01
|
Series: | Journal of Function Spaces |
Online Access: | http://dx.doi.org/10.1155/2022/5128343 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we examine two structure preserving numerical finite difference methods for solving the various reaction-diffusion models in one dimension, appearing in chemistry and biology. These are the finite difference methods in splitting environment, namely, operator splitting nonstandard finite difference (OS-NSFD) methods that effectively deal with nonlinearity in the models and computationally efficient. Positivity of both the proposed splitting methods is proved mathematically and verified with the simulations. A comparison is made between proposed OS-NSFD methods and well-known classical operator splitting finite difference (OS-FD) methods, which demonstrates the advantages of proposed methods. Furthermore, we applied proposed NSFD splitting methods on several numerical examples to validate all the attributes of the proposed numerical designs. |
---|---|
ISSN: | 2314-8888 |