Nonparametric Regression with Subfractional Brownian Motion via Malliavin Calculus

We study the asymptotic behavior of the sequence Sn=∑i=0n-1K(nαSiH1)(Si+1H2-SiH2), as n tends to infinity, where SH1 and SH2 are two independent subfractional Brownian motions with indices H1 and H2, respectively. K is a kernel function and the bandwidth parameter α satisfies some hypotheses in term...

Full description

Saved in:
Bibliographic Details
Main Authors: Yuquan Cang, Junfeng Liu, Yan Zhang
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2014/635917
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832562470139461632
author Yuquan Cang
Junfeng Liu
Yan Zhang
author_facet Yuquan Cang
Junfeng Liu
Yan Zhang
author_sort Yuquan Cang
collection DOAJ
description We study the asymptotic behavior of the sequence Sn=∑i=0n-1K(nαSiH1)(Si+1H2-SiH2), as n tends to infinity, where SH1 and SH2 are two independent subfractional Brownian motions with indices H1 and H2, respectively. K is a kernel function and the bandwidth parameter α satisfies some hypotheses in terms of H1 and H2. Its limiting distribution is a mixed normal law involving the local time of the sub-fractional Brownian motion SH1. We mainly use the techniques of Malliavin calculus with respect to sub-fractional Brownian motion.
format Article
id doaj-art-58d16167542a4a93bf1a665da0627d40
institution Kabale University
issn 1085-3375
1687-0409
language English
publishDate 2014-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-58d16167542a4a93bf1a665da0627d402025-02-03T01:22:29ZengWileyAbstract and Applied Analysis1085-33751687-04092014-01-01201410.1155/2014/635917635917Nonparametric Regression with Subfractional Brownian Motion via Malliavin CalculusYuquan Cang0Junfeng Liu1Yan Zhang2School of Mathematics and Statistics, Nanjing Audit University, 86 West Yushan Road, Pukou, Nanjing 211815, ChinaSchool of Mathematics and Statistics, Nanjing Audit University, 86 West Yushan Road, Pukou, Nanjing 211815, ChinaSchool of Mathematics and Statistics, Nanjing Audit University, 86 West Yushan Road, Pukou, Nanjing 211815, ChinaWe study the asymptotic behavior of the sequence Sn=∑i=0n-1K(nαSiH1)(Si+1H2-SiH2), as n tends to infinity, where SH1 and SH2 are two independent subfractional Brownian motions with indices H1 and H2, respectively. K is a kernel function and the bandwidth parameter α satisfies some hypotheses in terms of H1 and H2. Its limiting distribution is a mixed normal law involving the local time of the sub-fractional Brownian motion SH1. We mainly use the techniques of Malliavin calculus with respect to sub-fractional Brownian motion.http://dx.doi.org/10.1155/2014/635917
spellingShingle Yuquan Cang
Junfeng Liu
Yan Zhang
Nonparametric Regression with Subfractional Brownian Motion via Malliavin Calculus
Abstract and Applied Analysis
title Nonparametric Regression with Subfractional Brownian Motion via Malliavin Calculus
title_full Nonparametric Regression with Subfractional Brownian Motion via Malliavin Calculus
title_fullStr Nonparametric Regression with Subfractional Brownian Motion via Malliavin Calculus
title_full_unstemmed Nonparametric Regression with Subfractional Brownian Motion via Malliavin Calculus
title_short Nonparametric Regression with Subfractional Brownian Motion via Malliavin Calculus
title_sort nonparametric regression with subfractional brownian motion via malliavin calculus
url http://dx.doi.org/10.1155/2014/635917
work_keys_str_mv AT yuquancang nonparametricregressionwithsubfractionalbrownianmotionviamalliavincalculus
AT junfengliu nonparametricregressionwithsubfractionalbrownianmotionviamalliavincalculus
AT yanzhang nonparametricregressionwithsubfractionalbrownianmotionviamalliavincalculus