On Defining Expressions for Entropy and Cross-Entropy: The Entropic Transreals and Their Fracterm Calculus

Classic formulae for entropy and cross-entropy contain operations <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mstyle scriptlevel="0" displaystyle="true"><mfrac><mi>x</mi&g...

Full description

Saved in:
Bibliographic Details
Main Authors: Jan A. Bergstra, John V. Tucker
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/27/1/31
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832588551873626112
author Jan A. Bergstra
John V. Tucker
author_facet Jan A. Bergstra
John V. Tucker
author_sort Jan A. Bergstra
collection DOAJ
description Classic formulae for entropy and cross-entropy contain operations <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mstyle scriptlevel="0" displaystyle="true"><mfrac><mi>x</mi><mn>0</mn></mfrac></mstyle></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mo form="prefix">log</mo><mn>2</mn></msub><mi>x</mi></mrow></semantics></math></inline-formula> that are not defined on all inputs. This can lead to calculations with problematic subexpressions such as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><msub><mo form="prefix">log</mo><mn>2</mn></msub><mn>0</mn></mrow></semantics></math></inline-formula> and uncertainties in large scale calculations; partiality also introduces complications in logical analysis. Instead of adding conventions or splitting formulae into cases, we create a new algebra of real numbers with two symbols <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>±</mo><mo>∞</mo></mrow></semantics></math></inline-formula> for signed infinite values and a symbol named ⊥ for the undefined. In this resulting arithmetic, entropy, cross-entropy, Kullback–Leibler divergence, and Shannon divergence can be expressed without concerning any further conventions. The algebra may form a basis for probability theory more generally.
format Article
id doaj-art-58bdde8331d64de0b05419d1e3eab0b9
institution Kabale University
issn 1099-4300
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj-art-58bdde8331d64de0b05419d1e3eab0b92025-01-24T13:31:44ZengMDPI AGEntropy1099-43002025-01-012713110.3390/e27010031On Defining Expressions for Entropy and Cross-Entropy: The Entropic Transreals and Their Fracterm CalculusJan A. Bergstra0John V. Tucker1Informatics Institute, University of Amsterdam, Science Park 900, 1098 XH Amsterdam, The NetherlandsDepartment of Computer Science, Bay Campus, Fabian Way, Swansea University, Swansea SA1 8EN, UKClassic formulae for entropy and cross-entropy contain operations <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mstyle scriptlevel="0" displaystyle="true"><mfrac><mi>x</mi><mn>0</mn></mfrac></mstyle></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mo form="prefix">log</mo><mn>2</mn></msub><mi>x</mi></mrow></semantics></math></inline-formula> that are not defined on all inputs. This can lead to calculations with problematic subexpressions such as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><msub><mo form="prefix">log</mo><mn>2</mn></msub><mn>0</mn></mrow></semantics></math></inline-formula> and uncertainties in large scale calculations; partiality also introduces complications in logical analysis. Instead of adding conventions or splitting formulae into cases, we create a new algebra of real numbers with two symbols <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>±</mo><mo>∞</mo></mrow></semantics></math></inline-formula> for signed infinite values and a symbol named ⊥ for the undefined. In this resulting arithmetic, entropy, cross-entropy, Kullback–Leibler divergence, and Shannon divergence can be expressed without concerning any further conventions. The algebra may form a basis for probability theory more generally.https://www.mdpi.com/1099-4300/27/1/31partial formulaefracterm calculustransrealsentropic transrealsperipheral numbersentropy
spellingShingle Jan A. Bergstra
John V. Tucker
On Defining Expressions for Entropy and Cross-Entropy: The Entropic Transreals and Their Fracterm Calculus
Entropy
partial formulae
fracterm calculus
transreals
entropic transreals
peripheral numbers
entropy
title On Defining Expressions for Entropy and Cross-Entropy: The Entropic Transreals and Their Fracterm Calculus
title_full On Defining Expressions for Entropy and Cross-Entropy: The Entropic Transreals and Their Fracterm Calculus
title_fullStr On Defining Expressions for Entropy and Cross-Entropy: The Entropic Transreals and Their Fracterm Calculus
title_full_unstemmed On Defining Expressions for Entropy and Cross-Entropy: The Entropic Transreals and Their Fracterm Calculus
title_short On Defining Expressions for Entropy and Cross-Entropy: The Entropic Transreals and Their Fracterm Calculus
title_sort on defining expressions for entropy and cross entropy the entropic transreals and their fracterm calculus
topic partial formulae
fracterm calculus
transreals
entropic transreals
peripheral numbers
entropy
url https://www.mdpi.com/1099-4300/27/1/31
work_keys_str_mv AT janabergstra ondefiningexpressionsforentropyandcrossentropytheentropictransrealsandtheirfractermcalculus
AT johnvtucker ondefiningexpressionsforentropyandcrossentropytheentropictransrealsandtheirfractermcalculus