Microgrid energy management strategy considering source-load forecast error

Hybrid energy storage system (HESS) can stabilize renewable energy power generation, but unreasonable energy storage power distribution and photovoltaic-load forecast errors will affect the economic benefits of the whole system. Aiming at the microgrid (MG) composed of photovoltaic (PV) and HESS, an...

Full description

Saved in:
Bibliographic Details
Main Authors: Kaikai Zhang, Guibin Zou, Jinliang Zhang, Houlei Li, Yazhong Sun, Guoliang Li
Format: Article
Language:English
Published: Elsevier 2025-03-01
Series:International Journal of Electrical Power & Energy Systems
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0142061524005957
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hybrid energy storage system (HESS) can stabilize renewable energy power generation, but unreasonable energy storage power distribution and photovoltaic-load forecast errors will affect the economic benefits of the whole system. Aiming at the microgrid (MG) composed of photovoltaic (PV) and HESS, an energy management strategy (EMS) of MG considering forecast errors is proposed. Firstly, an optimization model considering the depreciation cost of battery is established. Secondly, day-ahead EMS is implemented under multiple operating modes considering minimum fluctuation and optimal economy. Then, according to the real-time forecast results and the feedback of system operation status, the intraday rolling energy management strategy (REMS) is developed to alleviate the impact of forecast errors. Finally, the real-time state of charge (SOC) of the supercapacitor (SC) is introduced to adjust the filter coefficient, which avoids the SC working in the charge/discharge restricted area for a long time and improves the adjustment effect. The results of the case analysis show that the proposed intraday REMS can effectively reduce the influence of forecast errors on energy management.
ISSN:0142-0615