Experimental Study on Noncoaxial Characteristics of Saturated Remolded Loess
In practical engineering, if the influence of noncoaxial stress and strain is not considered, part of soil deformation will be ignored, resulting in the structural design which is not safe enough. A series of undrained tests was performed on remolded loess specimens using a hollow cylinder apparatus...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-01-01
|
Series: | Advances in Civil Engineering |
Online Access: | http://dx.doi.org/10.1155/2020/8872356 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832567307880103936 |
---|---|
author | Xuemeng Jiang Haoshuang Niu Wenpeng Huang Xuwen Shang Deng Wang |
author_facet | Xuemeng Jiang Haoshuang Niu Wenpeng Huang Xuwen Shang Deng Wang |
author_sort | Xuemeng Jiang |
collection | DOAJ |
description | In practical engineering, if the influence of noncoaxial stress and strain is not considered, part of soil deformation will be ignored, resulting in the structural design which is not safe enough. A series of undrained tests was performed on remolded loess specimens using a hollow cylinder apparatus to examine the coupling between principal stress magnitude and direction in these specimens. First, the elastic parameters of remolded loess were obtained, and these parameters were used as the basis for investigating the noncoaxiality of the soil body under principal stress axis rotation (PSAR). The effects of elastic strain, intermediate principal stress coefficient, and magnitude of the deviatoric stress on the noncoaxiality of remolded loess were also investigated. The results of these experiments show that remolded loess exhibits significant noncoaxial behavior during PSAR. The noncoaxiality angle of remolded loess cyclically fluctuates with increases in the principal stress angle. It was also observed that the noncoaxiality angle will be overestimated if the effects of elastic strain are overlooked. Reversals in the direction of PSAR cause dramatic changes in the noncoaxiality angle. Increases in the intermediate principal stress coefficient are accompanied by increases in the noncoaxiality angle, up to a certain degree; however, these changes do not affect the development of the noncoaxiality angle. In coupled rotational tests with a range of deviatoric stress amplitudes, it was observed that changes in the deviatoric stress amplitude will affect the development of the noncoaxiality angle; increases in the deviatoric stress amplitude cause the noncoaxiality angle versus principle stress angle plot to shift to the left gradually, thus accelerating the trends of the noncoaxiality angle. Increases in the cycle number also increase the noncoaxiality of remolded loess. |
format | Article |
id | doaj-art-57a077a2301845d588090682434db625 |
institution | Kabale University |
issn | 1687-8086 1687-8094 |
language | English |
publishDate | 2020-01-01 |
publisher | Wiley |
record_format | Article |
series | Advances in Civil Engineering |
spelling | doaj-art-57a077a2301845d588090682434db6252025-02-03T01:01:54ZengWileyAdvances in Civil Engineering1687-80861687-80942020-01-01202010.1155/2020/88723568872356Experimental Study on Noncoaxial Characteristics of Saturated Remolded LoessXuemeng Jiang0Haoshuang Niu1Wenpeng Huang2Xuwen Shang3Deng Wang4Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang’an University, Xi’an 710064, ChinaKey Laboratory for Special Area Highway Engineering of Ministry of Education, Chang’an University, Xi’an 710064, ChinaKey Laboratory for Special Area Highway Engineering of Ministry of Education, Chang’an University, Xi’an 710064, ChinaKey Laboratory for Special Area Highway Engineering of Ministry of Education, Chang’an University, Xi’an 710064, ChinaKey Laboratory for Special Area Highway Engineering of Ministry of Education, Chang’an University, Xi’an 710064, ChinaIn practical engineering, if the influence of noncoaxial stress and strain is not considered, part of soil deformation will be ignored, resulting in the structural design which is not safe enough. A series of undrained tests was performed on remolded loess specimens using a hollow cylinder apparatus to examine the coupling between principal stress magnitude and direction in these specimens. First, the elastic parameters of remolded loess were obtained, and these parameters were used as the basis for investigating the noncoaxiality of the soil body under principal stress axis rotation (PSAR). The effects of elastic strain, intermediate principal stress coefficient, and magnitude of the deviatoric stress on the noncoaxiality of remolded loess were also investigated. The results of these experiments show that remolded loess exhibits significant noncoaxial behavior during PSAR. The noncoaxiality angle of remolded loess cyclically fluctuates with increases in the principal stress angle. It was also observed that the noncoaxiality angle will be overestimated if the effects of elastic strain are overlooked. Reversals in the direction of PSAR cause dramatic changes in the noncoaxiality angle. Increases in the intermediate principal stress coefficient are accompanied by increases in the noncoaxiality angle, up to a certain degree; however, these changes do not affect the development of the noncoaxiality angle. In coupled rotational tests with a range of deviatoric stress amplitudes, it was observed that changes in the deviatoric stress amplitude will affect the development of the noncoaxiality angle; increases in the deviatoric stress amplitude cause the noncoaxiality angle versus principle stress angle plot to shift to the left gradually, thus accelerating the trends of the noncoaxiality angle. Increases in the cycle number also increase the noncoaxiality of remolded loess.http://dx.doi.org/10.1155/2020/8872356 |
spellingShingle | Xuemeng Jiang Haoshuang Niu Wenpeng Huang Xuwen Shang Deng Wang Experimental Study on Noncoaxial Characteristics of Saturated Remolded Loess Advances in Civil Engineering |
title | Experimental Study on Noncoaxial Characteristics of Saturated Remolded Loess |
title_full | Experimental Study on Noncoaxial Characteristics of Saturated Remolded Loess |
title_fullStr | Experimental Study on Noncoaxial Characteristics of Saturated Remolded Loess |
title_full_unstemmed | Experimental Study on Noncoaxial Characteristics of Saturated Remolded Loess |
title_short | Experimental Study on Noncoaxial Characteristics of Saturated Remolded Loess |
title_sort | experimental study on noncoaxial characteristics of saturated remolded loess |
url | http://dx.doi.org/10.1155/2020/8872356 |
work_keys_str_mv | AT xuemengjiang experimentalstudyonnoncoaxialcharacteristicsofsaturatedremoldedloess AT haoshuangniu experimentalstudyonnoncoaxialcharacteristicsofsaturatedremoldedloess AT wenpenghuang experimentalstudyonnoncoaxialcharacteristicsofsaturatedremoldedloess AT xuwenshang experimentalstudyonnoncoaxialcharacteristicsofsaturatedremoldedloess AT dengwang experimentalstudyonnoncoaxialcharacteristicsofsaturatedremoldedloess |