Reliability and Validity Examination of a New Gait Motion Analysis System
Recent advancements have made two-dimensional (2D) clinical gait analysis systems more accessible and portable than traditional three-dimensional (3D) clinical systems. This study evaluates the reliability and validity of gait measurements using monocular and composite camera setups with VisionPose,...
Saved in:
| Main Authors: | , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-02-01
|
| Series: | Sensors |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1424-8220/25/4/1076 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Recent advancements have made two-dimensional (2D) clinical gait analysis systems more accessible and portable than traditional three-dimensional (3D) clinical systems. This study evaluates the reliability and validity of gait measurements using monocular and composite camera setups with VisionPose, comparing them to the Vicon 3D motion capture system as a reference. Key gait parameters—including hip and knee joint angles, and time and distance factors—were assessed under normal, maximum speed, and tandem gait conditions during level walking. The results show that the intraclass correlation coefficient (ICC(1,k)) for the 2D model exceeded 0.969 for the monocular camera and 0.963 for the composite camera for gait parameters. Time–distance gait parameters demonstrated excellent relative agreement across walking styles, while joint range of motion showed overall strong agreement. However, accuracy was lower for measurements during tandem walking. The Cronbach’s alpha coefficient for time–distance parameters ranged from 0.932 to 0.999 (monocular) and from 0.823 to 0.998 (composite). In contrast, for joint range of motion, the coefficient varied more widely, ranging from 0.826 to 0.985 (monocular) and from 0.314 to 0.974 (composite). The correlation coefficients for spatiotemporal gait parameters were greater than 0.933 (monocular) and 0.837 (composite). However, for joint angle parameters, the coefficients were lower during tandem walking. This study underscores the potential of 2D models in clinical applications and highlights areas for improvement to enhance their reliability and application scope. |
|---|---|
| ISSN: | 1424-8220 |