Pullout Characteristics and Damage Softening Model of the Geogrid-Soil Interface

The mechanical properties of geogrid-soil interface is very important in design and stability analysis of reinforced soil structure. In order to study the complicated mechanism of geogrid-soil interface, a series of pullout tests of HDPE uniaxial tensile geogrids with the different transverse ribs s...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaoyong Liang, Jing Jin, Guangqing Yang, Xizhao Wang, Yitao Zhou
Format: Article
Language:English
Published: Wiley 2022-01-01
Series:Advances in Materials Science and Engineering
Online Access:http://dx.doi.org/10.1155/2022/8047519
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The mechanical properties of geogrid-soil interface is very important in design and stability analysis of reinforced soil structure. In order to study the complicated mechanism of geogrid-soil interface, a series of pullout tests of HDPE uniaxial tensile geogrids with the different transverse ribs spacing is used to investigate the interaction characteristics in the laboratory. The test results show that pullout force and displacement curves are characterized as strain softening; compared with the no-reinforced case, the case reinforced with geogrid has larger cohesion and lower friction angles. The ductility of soil is enhanced due to geogrid reinforcement. Based on the basic control equations of the interface and damage theory, trilinear shear stress-displacement damage softening model is proposed to describe the strain-softening characteristics of geogrid-soil interface. Analytical solutions of interface tension, shear stress, and displacement at different stages are derived considering strain softening based on damage, and the development of shear stress and progressive failure mode of the geogrid-soil interface at different pullout stages is revealed. Furthermore, the proposed model is verified by experimental results.
ISSN:1687-8442